Advertisement

Microfluidic Lab-on-a-Chip Platforms: Requirements, Characteristics and Applications

  • D. Mark
  • S. Haeberle
  • G. Roth
  • F. Von Stetten
  • R. Zengerle
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)

Abstract

This review summarizes recent developments in microfluidic platform approaches. In contrast to isolated application-specific solutions, a microfluidic platform provides a set of fluidic unit operations, which are designed for easy combination within a well-defined fabrication technology. This allows the implementation of different application-specific (bio-) chemical processes, automated by microfluidic process integration [1]. A brief introduction into technical advances, major market segments and promising applications is followed by a detailed characterization of different microfluidic platforms, comprising a short definition, the functional principle, microfluidic unit operations, application examples as well as strengths and limitations. The microfluidic platforms in focus are lateral flow tests, linear actuated devices, pressure driven laminar flow, microfluidic large scale integration, segmented flow microfluidics, centrifugal microfluidics, electro-kinetics, electrowetting, surface acoustic waves, and systems for massively parallel analysis. The review concludes with the attempt to provide a selection scheme for microfluidic platforms which is based on their characteristics according to key requirements of different applications and market segments. Applied selection criteria comprise portability, costs of instrument and disposable, sample throughput, number of parameters per sample, reagent consumption, precision, diversity of microfluidic unit operations and the flexibility in programming different liquid handling protocols.

Keywords

Unit Operation Surface Acoustic Wave Microfluidic Chip Microfluidic Channel Microfluidic Platform 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We would like to thank our colleagues Junichi Miwa and Sven Kerzenmacher for their helpful suggestions and assistance during the preparation of this manuscript.

References

  1. 1.
    S. Haeberle and R. Zengerle, Microfluidic platforms for lab-on-a-chip applications, Lab on A Chip, vol. 7, no. 9, pp. 1094–1110, 2007.CrossRefGoogle Scholar
  2. 2.
    A. E. Kamholz, Proliferation of microfluidics in literature and intellectual property, Lab on A Chip, vol. 4, no. 2, pp. 16N–20N, 2004.CrossRefGoogle Scholar
  3. 3.
    C. Haber, Microfluidics in commercial applications; an industry perspective, Lab on A Chip, vol. 6, no. 9, pp. 1118–1121, 2006.CrossRefGoogle Scholar
  4. 4.
    H. P. Le, Progress and trends in ink-jet printing technology, Journal of Imaging Science and Technology, vol. 42, no. 1, pp. 49–62, Jan. 1998.Google Scholar
  5. 5.
    S. C. Terry, J. H. Jerman, and J. B. Angell, Gas-Chromatographic Air Analyzer Fabricated on A Silicon-Wafer, Ieee Transactions on Electron Devices, vol. 26, no. 12, pp. 1880–1886, 1979.ADSCrossRefGoogle Scholar
  6. 6.
    A. Manz, Y. Miyahara, J. Miura, Y. Watanabe, H. Miyagi, and K. Sato, Design of An Open-Tubular Column Liquid Chromatograph Using Silicon Chip Technology, Sensors and Actuators B-Chemical, vol. 1, no. 1–6, pp. 249–255, Jan. 1990.CrossRefGoogle Scholar
  7. 7.
    S. Shoji, M. Esashi, and T. Matsuo, Prototype Miniature Blood-Gas Analyzer Fabricated on A Silicon-Wafer, Sensors and Actuators, vol. 14, no. 2, pp. 101–107, June 1988.CrossRefGoogle Scholar
  8. 8.
    H. T. G. Van Lintel, F. C. M. Vandepol, and S. Bouwstra, A Piezoelectric Micropump Based on Micromachining of Silicon, Sensors and Actuators, vol. 15, no. 2, pp. 153–167, Oct. 1988.CrossRefGoogle Scholar
  9. 9.
    V. Gass, B. H. Vanderschoot, S. Jeanneret, and N. F. Derooij, Integrated Flow-Regulated Silicon Micropump, Sensors and Actuators A-Physical, vol. 43, no. 1–3, pp. 335–338, May 1994.CrossRefGoogle Scholar
  10. 10.
    E. Verpoorte, A. Manz, H. Ludi, A. E. Bruno, F. Maystre, B. Krattiger, H. M. Widmer, B. H. Vanderschoot, and N. F. Derooij, A Silicon Flow Cell for Optical-Detection in Miniaturized Total Chemical-Analysis Systems, Sensors and Actuators B-Chemical, vol. 6, no. 1–3, pp. 66–70, Jan. 1992.CrossRefGoogle Scholar
  11. 11.
    P. Arquint, M. Koudelkahep, B. H. Vanderschoot, P. Vanderwal, and N. F. Derooij, Micromachined Analyzers on A Silicon Chip, Clinical Chemistry, vol. 40, no. 9, pp. 1805–1809, Sept. 1994.Google Scholar
  12. 12.
    A. Manz, N. Graber, and H. M. Widmer, Miniaturized Total Chemical-Analysis Systems - A Novel Concept for Chemical Sensing, Sensors and Actuators B-Chemical, vol. 1, no. 1–6, pp. 244–248, Jan. 1990.CrossRefGoogle Scholar
  13. 13.
    D. J. Harrison, A. Manz, Z. H. Fan, H. Ludi, and H. M. Widmer, Capillary Electrophoresis and Sample Injection Systems Integrated on A Planar Glass Chip, Analytical Chemistry, vol. 64, no. 17, pp. 1926–1932, Sept. 1992.CrossRefGoogle Scholar
  14. 14.
    T. Chard, Pregnancy Tests - A Review, Human Reproduction, vol. 7, no. 5, pp. 701–710, May 1992.Google Scholar
  15. 15.
    J. M. Hicks and M. Iosefsohn, Reliability of Home Pregnancy-Test Kits in the Hands of Laypersons, New England Journal of Medicine, vol. 320, no. 5, pp. 320–321, 1989.Google Scholar
  16. 16.
    D. J. Litman, R. H. Lee, H. J. Jeong, H. K. Tom, S. N. Stiso, N. C. Sizto, and E. F. Ullman, An Internally Referenced Test Strip Immunoassay for Morphine, Clinical Chemistry, vol. 29, no. 9, pp. 1598–1603, 1983.Google Scholar
  17. 17.
    L. Wilhelm, S. Jenckel, and R. Junker, Test strip handling in screening for drugs of abuse in the clinical toxicological setting, Laboratoriumsmedizin-Journal of Laboratory Medicine, vol. 32, no. 3, pp. 168–174, May 2008.CrossRefGoogle Scholar
  18. 18.
    R. Pacifici, M. Farre, S. Pichini, J. Ortuno, P. N. Roset, P. Zuccaro, J. Segura, and R. de la Torre, Sweat testing of MDMA with the Drugwipe (R) analytical device: A controlled study with two volunteers, Journal of Analytical Toxicology, vol. 25, no. 2, pp. 144–146, Mar. 2001.Google Scholar
  19. 19.
    A. H. B. Wu, Laboratory and near patient testing for cardiac markers, Journal of Clinical Ligand Assay, vol. 22, no. 1, pp. 32–37, 1999.Google Scholar
  20. 20.
    Rong-Hwa S., Huey-Fen S., and Shiao-Shek T, Colloidal gold based immunochromatogaphic assay for detection of ricin, Toxicon, vol. 40, pp. 255–258, 2002.CrossRefGoogle Scholar
  21. 21.
    H. Becker, Chips, money, industry, education and the “killer application” Lab on A Chip, vol. 9, no. 12, pp. 1659–1660, 2009.CrossRefGoogle Scholar
  22. 22.
    H. Becker, It’s the economy.., Lab on A Chip, vol. 9, pp. 2759–2762, 2009.CrossRefGoogle Scholar
  23. 23.
    R.J. Petri, Eine kleine Modification des Koch’schen Plattenverfahrens, Centralblatt für Bacteriologie und Parasitenkunde, vol. 1, pp. 279–280, 1887.Google Scholar
  24. 24.
    J. O. Corliss, Two most remarkable Amoeba men: Joseph Leidy (1823–1891) of Philadelphia and Eugene Penard (1855–1954) of Geneva, Protist, vol. 152, no. 1, pp. 69–85, May 2001.CrossRefGoogle Scholar
  25. 25.
    J. Hüser, R. Mannhold, H. Kubinyi, and G. Folkers, High-Throughput Screening in Drug Discovery (Methods and Principles in Medicinal Chemistry), 1 ed Wiley-VCH, 2006.CrossRefGoogle Scholar
  26. 26.
    G. M. Whitesides, The origins and the future of microfluidics, Nature, vol. 442, no. 7101, pp. 368–373, July 2006.ADSCrossRefGoogle Scholar
  27. 27.
    J. H. Leamon, W. L. Lee, K. R. Tartaro, J. R. Lanza, G. J. Sarkis, A. D. deWinter, J. Berka, and K. L. Lohman, A massively parallel PicoTiterPlate (TM) based platform for discrete picoliter-scale polymerase chain reactions, Electrophoresis, vol. 24, no. 21, pp. 3769–3777, 2003.CrossRefGoogle Scholar
  28. 28.
    M. Margulies, M. Egholm, W.E. Altman, S. Attiya, J.S. Bader, L.A. Bemben, J. Berka, M.S. Braverman, Y.J. Chen, Z.T. Chen, S.B. Dewell, L. Du, J.M. Fierro, X.V. Gomes, B.C. Godwin, W. He, S. Helgesen, C.H. Ho, G.P. Irzyk, S.C. Jando, M.L.I. Alenquer, T.P. Jarvie, K.B. Jirage, J.B. Kim, J.R. Knight, J.R. Lanza, J.H. Leamon, S.M. Lefkowitz, M. Lei, J. Li, K.L. Lohman, H. Lu, V.B. Makhijani, K.E. Mcdade, M.P. McKenna, E.W. Myers, E. Nickerson, J.R. Nobile, R. Plant, B.P. Puc, M.T. Ronan, G.T. Roth, G.J. Sarkis, J.F. Simons, J.W. Simpson, M. Srinivasan, K.R. Tartaro, A. Tomasz, K.A. Vogt, G.A. Volkmer, S.H. Wang, Y. Wang, M.P. Weiner, P.G. Yu, R.F. Begley, and J.M. Rothberg, Genome sequencing in microfabricated high-density picolitre reactors, Nature, vol. 437, no. 7057, pp. 376–380, 2005.ADSGoogle Scholar
  29. 29.
    S. Takayama, E. Ostuni, P. Leduc, K. Naruse, D. E. Ingber, and G. M. Whitesides, Laminar flows - Subcellular positioning of small molecules, Nature, vol. 411, no. 6841, p. 1016, 2001.ADSCrossRefGoogle Scholar
  30. 30.
    S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, Droplet microfluidics, Lab on A Chip, vol. 8, no. 2, pp. 198–220, 2008.CrossRefGoogle Scholar
  31. 31.
    A. Huebner, M. Srisa-Art, D. Holt, C. Abell, F. Hollfelder, A. J. deMello, and J. B. Edel, Quantitative detection of protein expression in single cells using droplet microfluidics, Chemical Communications, no. 12, pp. 1218–1220, 2007.CrossRefGoogle Scholar
  32. 32.
    S. K. Cho, H. J. Moon, and C. J. Kim, Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits, Journal of Microelectromechanical Systems, vol. 12, no. 1, pp. 70–80, Feb. 2003.CrossRefGoogle Scholar
  33. 33.
    C. S. Zhang and D. Xing, Miniaturized PCR chips for nucleic acid amplification and analysis: latest advances and future trends, Nucleic Acids Research, vol. 35, no. 13, pp. 4223–4237, 2007.CrossRefGoogle Scholar
  34. 34.
    S. Shoji and M. Esashi, Microflow devices and systems, Journal of Micro-mechanics and Microengineering, vol. 4, no. 4, pp. 157–171, Dec. 1994.ADSCrossRefGoogle Scholar
  35. 35.
    D. J. Laser and J. G. Santiago, A review of micropumps, Journal of Micro-mechanics and Microengineering, vol. 14, no. 6, p. R35–R64, June 2004.ADSCrossRefGoogle Scholar
  36. 36.
    P. Woias, Micropumps - past, progress and future prospects, Sensors and Actuators B-Chemical, vol. 105, no. 1, pp. 28–38, Feb. 2005.Google Scholar
  37. 37.
    P. Gravesen, J. Braneberg, and O. S. Jensen, Microfluidics-a review, Journal of Micromechanics and Microengineering, vol. 3, no. 4, pp. 168–182, Dec. 1993.ADSCrossRefGoogle Scholar
  38. 38.
    K. W. Oh and C. H. Ahn, A review of microvalves, Journal of Micromechanics and Microengineering, vol. 16, no. 5, p. R13–R39, May 2006.ADSCrossRefGoogle Scholar
  39. 39.
    N. T. Nguyen and Z. G. Wu, Micromixers - a review, Journal of Micro-mechanics and Microengineering, vol. 15, no. 2, p. R1–R16, Feb. 2005.ADSCrossRefGoogle Scholar
  40. 40.
    V. Hessel, H. Lowe, and F. Schonfeld, Micromixers - a review on passive and active mixing principles, Chemical Engineering Science, vol. 60, no. 8–9, pp. 2479–2501, Apr. 2005.CrossRefGoogle Scholar
  41. 41.
    J. Ducrée and R. Zengerle, FlowMap - Microfluidics Roadmap for the Life Sciences. Norderstedt, Germany: Books on Demand GmbH, 2004.Google Scholar
  42. 42.
    M. Banks, A. Cacace, J. O’Connel, and J. Houston, “High-Troughput Screening: Evolution of Technology and Methods,” in Drug Discovery Handbook, 1 ed. S. C. Gad, Ed. Cary, North Carolina: John Wiley & Sons, Inc., 2005, pp. 559–602.Google Scholar
  43. 43.
    G. E. Croston, Functional cell-based uHTS in chemical genomic drug discovery, Trends in Biotechnology, vol. 20, no. 3, pp. 110–115, 2002.CrossRefGoogle Scholar
  44. 44.
    S. A. Sundberg, High-throughput and ultra-high-throughput screening: solution- and cell-based approaches, Current Opinion in Biotechnology, vol. 11, no. 1, pp. 47–53, 2000.CrossRefGoogle Scholar
  45. 45.
    H. L. T. Lee, P. Boccazzi, R. J. Ram, and A. J. Sinskey, Microbioreactor arrays with integrated mixers and fluid injectors for high-throughput experimentation with pH and dissolved oxygen control, Lab on A Chip, vol. 6, no. 9, pp. 1229–1235, 2006.CrossRefGoogle Scholar
  46. 46.
    S. T. Yang, X. D. Zhang, and Y. Wen, Microbioreactors for high-throughput cytotoxicity assays, Current Opinion in Drug Discovery & Development, vol. 11, no. 1, pp. 111–127, Jan. 2008.Google Scholar
  47. 47.
    Y. Wen and S. T. Yang, The future of microfluidic assays in drug development, Expert Opinion on Drug Discovery, vol. 3, no. 10, pp. 1237–1253, Oct. 2008.CrossRefGoogle Scholar
  48. 48.
    V. Hessel and H. Lowe, Microchemical engineering: Components, plant concepts user acceptance - Part I, Chemical Engineering & Technology, vol. 26, no. 1, pp. 13–24, Jan. 2003.CrossRefGoogle Scholar
  49. 49.
    H. Lowe and W. Ehrfeld, State-of-the-art in microreaction technology: concepts, manufacturing and applications, Electrochimica Acta, vol. 44, no. 21–22, pp. 3679–3689, 1999.CrossRefGoogle Scholar
  50. 50.
    W. Ehrfeld, H. Lowe, V. Hessel, and T. Richter, Potential applications of chemical and biological microreactors, Chemie Ingenieur Technik, vol. 69, no. 7, pp. 931–934, July 1997.CrossRefGoogle Scholar
  51. 51.
    D. M. Roberge, L. Ducry, N. Bieler, P. Cretton, and B. Zimmermann, Microreactor technology: A revolution for the fine chemical and pharmaceutical industries? Chemical Engineering & Technology, vol. 28, no. 3, pp. 318–323, Mar. 2005.CrossRefGoogle Scholar
  52. 52.
    H. Pennemann, V. Hessel, and H. Lowe, Chemical microprocess technology - from laboratory-scale to production, Chemical Engineering Science, vol. 59, no. 22–23, pp. 4789–4794, Nov. 2004.CrossRefGoogle Scholar
  53. 53.
    A. M. Elizarov, Microreactors for radiopharmaceutical synthesis, Lab on A Chip, vol. 9, no. 10, pp. 1326–1333, 2009.CrossRefGoogle Scholar
  54. 54.
    Y. L. Liu, J. D. Adams, K. Turner, F. V. Cochran, S. S. Gambhir, and H. T. Soh, Controlling the selection stringency of phage display using a microfluidic device, Lab on A Chip, vol. 9, no. 8, pp. 1033–1036, 2009.CrossRefGoogle Scholar
  55. 55.
    P. H. Bessette, X. Y. Hu, H. T. Soh, and P. S. Daugherty, Microfluidic library screening for mapping antibody epitopes, Analytical Chemistry, vol. 79, no. 5, pp. 2174–2178, Mar. 2007.CrossRefGoogle Scholar
  56. 56.
    L. M. Borland, S. Kottegoda, K. S. Phillips, and N. L. Allbritton, Chemical Analysis of Single Cells, Annual Review of Analytical Chemistry, vol. 1, pp. 191–227, 2008.ADSCrossRefGoogle Scholar
  57. 57.
    T. C. Chao and A. Ros, Microfluidic single-cell analysis of intracellular compounds, Journal of the Royal Society Interface, vol. 5, p. S139–S150, Oct. 2008.CrossRefGoogle Scholar
  58. 58.
    H. Becker and L. E. Locascio, Polymer microfluidic devices, Talanta, vol. 56, no. 2, pp. 267–287, 2002.CrossRefGoogle Scholar
  59. 59.
    T. B. Christensen, C. M. Pedersen, K. G. Grondhal, T. G. Jensen, A. Sekulovic, D. D. Bang, and A. Wolff, PCR biocompatibility of lab-on-a-chip and MEMS materials, Journal of Micromechanics and Microengineering, vol. 17, no. 8, pp. 1527–1532, Aug. 2007.ADSCrossRefGoogle Scholar
  60. 60.
    F. Reynolds, J. Pitha, P. M. Pitha, and D. Grundberg, Inhibition of Cell- Free Protein-Synthesis by Poly(9-Vinyladenine), Poly (1-Vinyluracil), and Corresponding Vinyl Copolymer, Biochemistry, vol. 11, no. 17, pp. 3261–3266, 1972.Google Scholar
  61. 61.
    S. Landi, H. R. Held, and M. C. Tseng, Comparative Study of C-14 Labeled Purified Proteins and Their Adsorption to Glass, Applied Microbiology, vol. 20, no. 5, pp. 696–703, 1970.Google Scholar
  62. 62.
    L. Gunasekara, W. M. Schoel, S. Schurch, and M. W. Amrein, A comparative study of mechanisms of surfactant inhibition, Biochimica et Biophysica Acta-Biomembranes, vol. 1778, no. 2, pp. 433–444, Feb. 2008.CrossRefGoogle Scholar
  63. 63.
    H. Schonheyder and P. Andersen, Effects of Bovine Serum-Albumin on Antibody Determination by the Enzyme-Linked Immunosorbent-Assay, Journal of Immunological Methods, vol. 72, no. 1, pp. 251–259, 1984.CrossRefGoogle Scholar
  64. 64.
    A. G. Papavassiliou and D. Bohmann, Optimization of the Signal-To-Noise Ratio in South-Western Assays by Using Lipid-Free Bsa As Blocking Reagent, Nucleic Acids Research, vol. 20, no. 16, pp. 4365–4366, Aug. 1992.CrossRefGoogle Scholar
  65. 65.
    J. Steigert, S. Haeberle, T. Brenner, C. Muller, C. P. Steinert, P. Koltay, N. Gottschlich, H. Reinecke, J. Ruhe, R. Zengerle, and J. Ducrée, Rapid prototyping of microfluidic chips in COC, Journal of Micromechanics and Microengineering, vol. 17, no. 2, pp. 333–341, Feb. 2007.ADSCrossRefGoogle Scholar
  66. 66.
    C. W. Tsao and D. L. Devoe, Bonding of thermoplastic polymer microfluidics, Microfluidics and Nanofluidics, vol. 6, no. 1, pp. 1–16, Jan. 2009.CrossRefGoogle Scholar
  67. 67.
    C. Glad and A. O. Grubb, Immunocapillary-Migration - New Method for Immunochemical Quantitation, Analytical Biochemistry, vol. 85, no. 1, pp. 180–187, 1978.CrossRefGoogle Scholar
  68. 68.
    J. H. W. Leuvering, P. J. H. M. Thal, M. V. D. Waart, and A. H. W. M. Schuurs, Sol Particle Agglutination Immunoassay for Human Chorionic-Gonadotropin, Fresenius Zeitschrift fur Analytische Chemie, vol. 301, no. 2, p. 132, 1980.CrossRefGoogle Scholar
  69. 69.
    G. A. Posthuma-Trumpie, J. Korf, and A. van Amerongen, Lateral flow (immuno) assay: its strengths, weaknesses, opportunities and threats. A literature survey, Analytical and Bioanalytical Chemistry, vol. 393, no. 2, pp. 569–582, Jan. 2009.CrossRefGoogle Scholar
  70. 70.
    B. Cosmi, G. Palareti, M. Moia, M. Carpenedo, V. Pengo, A. Biasiolo, P. Rampazzo, G. Morstabilini, and S. Testa, Accuracy of a portable prothrombin time monitor (Coagucheck) in patients on chronic oral anticoagulant therapy: A prospective multicenter study, Thrombosis Research, vol. 100, no. 4, pp. 279–286, Nov. 2000.CrossRefGoogle Scholar
  71. 71.
    T. J. Clark, P. H. McPherson, and K. F. Buechler, The Triage Cardiac Panel, Point of Care, vol. 1, no. 1, pp. 42–46, 2002.Google Scholar
  72. 72.
    S. Birnbaum, C. Uden, C. G. M. Magnusson, and S. Nilsson, Latex-Based Thin-Layer Immunoaffinity Chromatography for Quantitation of Protein Analytes, Analytical Biochemistry, vol. 206, no. 1, pp. 168–171, Oct. 1992.CrossRefGoogle Scholar
  73. 73.
    H. W. Wen, W. Borejsza-Wysocki, T. DeCory, and R. Durst, Development of a competitive liposome-based lateral flow assay for the rapid detection of the allergenic peanut protein Ara h1, Analytical and Bioanalytical Chemistry, vol. 382, no. 5, pp. 1217–1226, July 2005.CrossRefGoogle Scholar
  74. 74.
    “Evaluation of the CoaguChek XS System,” International Evaluation Workshop, Heidelberg, Germany, 2009.Google Scholar
  75. 75.
    W. Leung, C. P. Chan, T. H. Rainer, M. Ip, G. W. H. Cautherley, and R. Renneberg, InfectCheck CRP barcode-style lateral flow assay for semi-quantitative detection of C-reactive protein in distinguishing between bacterial and viral infections, Journal of Immunological Methods, vol. 336, no. 1, pp. 30–36, July 2008.CrossRefGoogle Scholar
  76. 76.
    A. Heller and B. Feldman, Electrochemical glucose sensors and their applications in diabetes management, Chemical Reviews, vol. 108, no. 7, pp. 2482–2505, July 2008.CrossRefGoogle Scholar
  77. 77.
    Joelle Daviaud, Dominique Fournet, Chantal Ballongue, Guy-Pierre Guillem, Alain Leblanc, ClaudeCasellas, and Bernard Pan, Reliability of Home Pregnancy-Test Kits in the Hands of Laypersons, New England Journal of Medicine, vol. 320, no. 5, pp. 320–321, Feb. 1989.Google Scholar
  78. 78.
    P. Bohme, M. Floriot, M. A. Sirveaux, D. Durain, O. Ziegler, P. Drouin, and B. Guerci, Evolution of analytical performance in portable glucose meters in the last decade, Diabetes Care, vol. 26, no. 4, pp. 1170–1175, Apr. 2003.CrossRefGoogle Scholar
  79. 79.
    S. C. Lou, C. Patel, S. F. Ching, and J. Gordon, One-Step Competitive Immunochromatographic Assay for Semiquantitative Determination of Lipoprotein(A) in Plasma, Clinical Chemistry, vol. 39, no. 4, pp. 619–624, Apr. 1993.Google Scholar
  80. 80.
    L. Wilhelm, S. Jenckel, and R. Junker, Test strip handling in screening for drugs of abuse in the clinical toxicological setting, Laboratoriumsmedizin-Journal of Laboratory Medicine, vol. 32, no. 3, pp. 168–174, May 2008.CrossRefGoogle Scholar
  81. 81.
    R. Krska and A. Molinelli, Rapid test strips for analysis of mycotoxins in food and feed, Analytical and Bioanalytical Chemistry, vol. 393, no. 1, pp. 67–71, Jan. 2009.CrossRefGoogle Scholar
  82. 82.
    H. L. Xie, W. Ma, L. Q. Liu, W. Chen, C. F. Peng, C. L. Xu, and L. B. Wang, Development and validation of an immunochromatographic assay for rapid multi-residues detection of cephems in milk, Analytica Chimica Acta, vol. 634, no. 1, pp. 129–133, Feb. 2009.CrossRefGoogle Scholar
  83. 83.
    D. J. Carter and R. B. Cary, Lateral flow microarrays: a novel platform for rapid nucleic acid detection based on miniaturized lateral flow chromatography, Nucleic Acids Research, vol. 35, no. 10 May 2007.Google Scholar
  84. 84.
    J. A. A. Ho, S. C. Zeng, W. H. Tseng, Y. J. Lin, and C. H. Chen, Liposome-based immunostrip for the rapid detection of Salmonella, Analytical and Bioanalytical Chemistry, vol. 391, no. 2, pp. 479–485, May 2008.CrossRefGoogle Scholar
  85. 85.
    K. A. Edwards and A. J. Baeumner, Liposome-Enhanced Lateral-Flow Assays for the Sandwich-Hybridization Detection of RNA, Methods in Molecular Biology, pp. 185–215, 2009.Google Scholar
  86. 86.
    P. L. A. M. Corstjens, M. Zuiderwijk, M. Nilsson, H. Feindt, R. S. Niedbala, and H. J. Tanke, Lateral-flow and up-converting phosphor reporters to detect single-stranded nucleic acids in a sandwich-hybridization assay, Analytical Biochemistry, vol. 312, no. 2, pp. 191–200, Jan. 2003.CrossRefGoogle Scholar
  87. 87.
    P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam, and B. H. Weigl, Microfluidic diagnostic technologies for global public health, Nature, vol. 442, no. 7101, pp. 412–418, July 2006.ADSCrossRefGoogle Scholar
  88. 88.
    J. Hu, The evolution of commercialized glucose sensors in China, Biosensors & Bioelectronics, vol. 24, no. 5, pp. 1083–1089, 2009.CrossRefGoogle Scholar
  89. 89.
    K. A. Erickson and P. Wilding, Evaluation of A Novel Point-Of-Care System, the I-Stat Portable Clinical Analyzer, Clinical Chemistry, vol. 39, no. 2, pp. 283–287, Feb. 1993.Google Scholar
  90. 90.
    S. Chen, G. Selecman, and B. Lemieux, Expanding rapid nucleic acid testing, IVD Technology, vol. 7, p. 51, 2004.Google Scholar
  91. 91.
    U. Abbott Point-of-Care, “Abbott Point-of-Care, USA,” 2006.Google Scholar
  92. 92.
    B. S. Karon, R. D. Mcbane, R. Chaudhry, L. K. Beyer, and P. J. Santrach, Accuracy of capillary whole blood international normalized ratio on the CoaguChek S, CoaguChek XS, and i-STAT 1 point-of-care analyzers, American Journal of Clinical Pathology, vol. 130, no. 1, pp. 88–92, 2008.CrossRefGoogle Scholar
  93. 93.
    E. Jacobs, E. Vadasdi, L. Sarkozi, and N. Colman, Analytical evaluation of i-STAT Portable Clinical Analyzer and use by nonlaboratory health-care professionals, Clinical Chemistry, vol. 39, no. 6, pp. 1069–1074, June 1993.Google Scholar
  94. 94.
    www.iquum.com, “IQuum, Inc.,” 2009.
  95. 95.
    L. Spielman and S. L. Goren, Improving Resolution in Coulter Counting by Hydrodynamic Focusing, Journal of Colloid and Interface Science, vol. 26, no. 2, pp. 175–182, 1968.CrossRefGoogle Scholar
  96. 96.
    G. Valet, Past and present concepts in flow cytometry: A European perspective, Journal of Biological Regulators and Homeostatic Agents, vol. 17, no. 3, pp. 213–222, 2003.Google Scholar
  97. 97.
    D. Huh, W. Gu, Y. Kamotani, J. B. Grotberg, and S. Takayama, Microfluidics for flow cytometric analysis of cells and particles, Physiological Measure-ment, vol. 26, no. 3, p. R73–R98, 2005.ADSCrossRefGoogle Scholar
  98. 98.
    X. D. Wu, C. H. Chon, Y. N. Wang, Y. J. Kang, and D. Q. Li, Simultaneous particle counting and detecting on a chip, Lab on A Chip, vol. 8, no. 11, pp. 1943–1949, 2008.CrossRefGoogle Scholar
  99. 99.
    M. Yamada and M. Seki, Microfluidic particle sorter employing flow splitting and recombining, Analytical Chemistry, vol. 78, no. 4, pp. 1357–1362, Feb. 2006.CrossRefGoogle Scholar
  100. 100.
    M. Yamada and M. Seki, Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics, Lab on A Chip, vol. 5, no. 11, pp. 1233–1239, 2005.CrossRefGoogle Scholar
  101. 101.
    M. Yamada, M. Nakashima, and M. Seki, Pinched flow fractionation: Continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel, Analytical Chemistry, vol. 76, no. 18, pp. 5465–5471, Sept. 2004.CrossRefGoogle Scholar
  102. 102.
    S. Chang and Y. H. Cho, A continuous size-dependent particle separator using a negative dielectrophoretic virtual pillar array, Lab on A Chip, vol. 8, pp. 1930–1936, 2008.CrossRefGoogle Scholar
  103. 103.
    A. A. S. Bhagat, S. S. Kuntaegowdanahalli, and I. Papautsky, Continuous particle separation in spiral microchannels using dean flows and differential migration, Lab on A Chip, vol. 8, pp. 1906–1914, 2008.CrossRefGoogle Scholar
  104. 104.
    A. T. Woolley, D. Hadley, P. Landre, A. J. de Mello, R. A. Mathies, and M. A. Northrup, Functional Integration of PCR Amplification and Capillary Electrophoresis in a Microfabricated DNA Analysis Device, Analytical Chemistry, vol. 68, no. 23, pp. 4081–4086, 1996.CrossRefGoogle Scholar
  105. 105.
    K. Sato, A. Hibara, M. Tokeshi, H. Hisamoto, and T. Kitamori, Integration of chemical and biochemical analysis systems into a glass microchip, Analytical Sciences, vol. 19, no. 1, pp. 15–22, Jan. 2003.CrossRefGoogle Scholar
  106. 106.
    M. Karle, J. Miwa, G. Roth, R. Zengerle, and F. von Stetten, “A Novel Microfluidic Platform for Continuous DNA Extraction and Purification Using Laminar Flow Magnetophoresis,” 2009, pp. 276–279.Google Scholar
  107. 107.
    J. H. Kang and J. K. Park, Magnetophoretic continuous purification of single-walled carbon nanotubes from catalytic impurities in a microfluidic device, Small, vol. 3, no. 10, pp. 1784–1791, Oct. 2007.CrossRefGoogle Scholar
  108. 108.
    N. Pamme and A. Manz, On-chip free-flow magnetophoresis: Continuous flow separation of magnetic particles and agglomerates, Analytical Chemistry, vol. 76, no. 24, pp. 7250–7256, Dec. 2004.CrossRefGoogle Scholar
  109. 109.
    N. Pamme and C. Wilhelm, Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis, Lab on A Chip, vol. 6, no. 8, pp. 974–980, 2006.CrossRefGoogle Scholar
  110. 110.
    T. Laurell, F. Petersson, and A. Nilsson, Chip integrated strategies for acoustic separation and manipulation of cells and particles, Chemical Society Reviews, vol. 36, no. 3, pp. 492–506, 2007.CrossRefGoogle Scholar
  111. 111.
    U. Kim, C. W. Shu, K. Y. Dane, P. S. Daugherty, J. Y. J. Wang, and H. T. Soh, Selection of mammalian cells based on their cell-cycle phase using dielectrophoresis, Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 52, pp. 20708–20712, 2007.ADSCrossRefGoogle Scholar
  112. 112.
    J. Takagi, M. Yamada, M. Yasuda, and M. Seki, Continuous particle separation in a microchannel having asymmetrically arranged multiple branches, Lab on A Chip, vol. 5, no. 7, pp. 778–784, 2005.CrossRefGoogle Scholar
  113. 113.
    A.F. Sauer-Budge, P. Mirer, A. Chatterjee, C.M. Klapperich, D. Chargin, and A. Sharon, Low cost and manufacturable complete microTAS for detecting bacteria, Lab on A Chip, 2009.Google Scholar
  114. 114.
    P. A. Auroux, Y. Koc, A. deMello, A. Manz, and P. J. R. Day, Miniaturised nucleic acid analysis, Lab on A Chip, vol. 4, no. 6, pp. 534–546, 2004.CrossRefGoogle Scholar
  115. 115.
    L. Chen, A. Manz, and P. J. R. Day, Total nucleic acid analysis integrated on microfluidic devices, Lab on A Chip, vol. 7, pp. 1413–1423, Aug. 2007.CrossRefGoogle Scholar
  116. 116.
    C. J. Easley, J. M. Karlinsey, J. M. Bienvenue, L. A. Legendre, M. G. Roper, S. H. Feldman, M. A. Hughes, E. L. Hewlett, T. J. Merkel, J. P. Ferrance, and J. P. Landers, A fully integrated microfluidic genetic analysis system with sample-in-answer-out capability, Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 51, pp. 19272–19277, Dec. 2006.ADSCrossRefGoogle Scholar
  117. 117.
    G. Taylor, Dispersion of Soluble Matter in Solvent Flowing Slowly Through A Tube, Proceedings of the Royal Society of London Series A - Mathematical and Physical Sciences, vol. 219, no. 1137, pp. 186–203, 1953.ADSCrossRefGoogle Scholar
  118. 118.
    A. Kumar and G. M. Whitesides, Features of Gold Having Micrometer to Centimeter Dimensions Can be Formed Through A Combination of Stamping with An Elastomeric Stamp and An Alkanethiol Ink Followed by Chemical Etching, Applied Physics Letters, vol. 63, no. 14, pp. 2002–2004, Oct. 1993.ADSCrossRefGoogle Scholar
  119. 119.
    J. A. Rogers and R. G. Nuzzo, Recent progress in soft lithography, Materials Today, vol. 8, no. 2, pp. 50–56, Feb. 2005.CrossRefGoogle Scholar
  120. 120.
    S. K. Sia and G. M. Whitesides, Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies, Electrophoresis, vol. 24, no. 21, pp. 3563–3576, Nov. 2003.CrossRefGoogle Scholar
  121. 121.
    M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, Monolithic microfabricated valves and pumps by multilayer soft lithography, Science, vol. 288, no. 5463, pp. 113–116, Apr. 2000.ADSCrossRefGoogle Scholar
  122. 122.
    T. Thorsen, S. J. Maerkl, and S. R. Quake, Microfluidic large-scale integration, Science, vol. 298, no. 5593, pp. 580–584, Oct. 2002.ADSCrossRefGoogle Scholar
  123. 123.
    S. Haeberle and R. Zengerle, Microfluidic Platforms for Lab-on-a-Chip Applications, Lab on A Chip, vol. 7, no. 9, pp. 1094–1110, 2007.CrossRefGoogle Scholar
  124. 124.
    S. R. Quake and A. Scherer, From micro- to nanofabrication with soft materials, Science, vol. 290, no. 5496, pp. 1536–1540, Nov. 2000.ADSCrossRefGoogle Scholar
  125. 125.
    H. P. Chou, M. A. Unger, and S. R. Quake, A Microfabricated Rotary Pump, Biomedical Microdevices, vol. 3, no. 4, pp. 323–330, 2001.CrossRefGoogle Scholar
  126. 126.
    J. W. Hong, V. Studer, G. Hang, W. F. Anderson, and S. R. Quake, A nanoliter-scale nucleic acid processor with parallel architecture, Nature Biotechnology, vol. 22, no. 4, pp. 435–439, Apr. 2004.CrossRefGoogle Scholar
  127. 127.
    J. W. Hong and S. R. Quake, Integrated nanoliter systems, Nature Biotechnology, vol. 21, no. 10, pp. 1179–1183, Oct. 2003.CrossRefGoogle Scholar
  128. 128.
    J. S. Marcus, W. F. Anderson, and S. R. Quake, Microfluidic single-cell mRNA isolation and analysis, Analytical Chemistry, vol. 78, no. 9, pp. 3084–3089, May 2006.CrossRefGoogle Scholar
  129. 129.
    J. S. Marcus, W. F. Anderson, and S. R. Quake, Parallel picoliter RT-PCR assays using microfluidics, Analytical Chemistry, vol. 78, no. 3, pp. 956–958, Feb. 2006.CrossRefGoogle Scholar
  130. 130.
    J. Liu, C. Hansen, and S. R. Quake, Solving the “world-to-chip” interface problem with a microfluidic matrix, Analytical Chemistry, vol. 75, no. 18, pp. 4718–4723, Sept. 2003.CrossRefGoogle Scholar
  131. 131.
    M. J. Anderson, C. L. Hansen, and S. R. Quake, Phase knowledge enables rational screens for protein crystallization, Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 45, pp. 16746–16751, 2006.ADSCrossRefGoogle Scholar
  132. 132.
    E. P. Kartalov, J. F. Zhong, A. Scherer, S. R. Quake, C. R. Taylor, and W. F. Anderson, High-throughput multi-antigen microfluidic fluorescence immunoassays, Biotechniques, vol. 40, no. 1, pp. 85–90, 2006.CrossRefGoogle Scholar
  133. 133.
    R. Gomez-Sjoberg, A. A. Leyrat, D. M. Pirone, C. S. Chen, and S. R. Quake, Versatile, fully automated, microfluidic cell culture system, Analytical Chemistry, vol. 79, pp. 8557–8563, 2007.CrossRefGoogle Scholar
  134. 134.
    J. Melin, A. Lee, K. Foygel, D. E. Leong, S. R. Quake, and M. W. M. Yao, In Vitro Embryo Culture in Defined, Sub-microliter Volumes, Developmental Dynamics, vol. 238, no. 4, pp. 950–955, 2009.CrossRefGoogle Scholar
  135. 135.
    Y. Y. Huang, P. Castrataro, C. C. Lee, and S. R. Quake, Solvent resistant microfluidic DNA synthesizer, Lab on A Chip, vol. 7, no. 1, pp. 24–26, 2007.CrossRefGoogle Scholar
  136. 136.
    R. A. White, P. C. Blainey, H. C. Fan, and S. R. Quake, Digital PCR provides sensitive and absolute calibration for high throughput sequencing, Bmc Genomics, vol. 10 Mar. 2009.Google Scholar
  137. 137.
    S. Bhat, J. Herrmann, P. Armishaw, P. Corbisier, and K. R. Emslie, Single molecule detection in nanofluidic digital array enables accurate measurement of DNA copy number, Analytical and Bioanalytical Chemistry, vol. 394, no. 2, pp. 457–467, May 2009.CrossRefGoogle Scholar
  138. 138.
    A. R. Wheeler, W. R. Throndset, R. J. Whelan, A. M. Leach, R. N. Zare, Y. H. Liao, K. Farrell, I. D. Manger, and A. Daridon, Microfluidic device for single-cell analysis, Analytical Chemistry, vol. 75, no. 14, pp. 3581–3586, July 2003.CrossRefGoogle Scholar
  139. 139.
    J. D. Berndt, T. L. Biechele, R. T. Moon, and M. B. Major, Integrative analysis of genome-wide RNA interference screens, Sci Signal, vol. 2, no. 70, p. t4, 2009.CrossRefGoogle Scholar
  140. 140.
    J. A. Weinstein, N. Jiang, R. A. White, D. S. Fisher, and S. R. Quake, High-Throughput Sequencing of the Zebrafish Antibody Repertoire, Science, vol. 324, no. 5928, pp. 807–810, May 2009.ADSCrossRefGoogle Scholar
  141. 141.
    V. G. Oehler, J. Qin, R. Ramakrishnan, G. Facer, S. Ananthnarayan, C. Cummings, M. Deininger, N. Shah, F. McCormick, S. Willis, A. Daridon, M. Unger, and J. P. Radich, Absolute quantitative detection of ABL tyrosine kinase domain point mutations in chronic myeloid leukemia using a novel nanofluidic platform and mutation-specific PCR, Leukemia, vol. 23, no. 2, pp. 396–399, Feb. 2009.CrossRefGoogle Scholar
  142. 142.
    J. E. Lee, M. L. Fusco, and E. O. Saphire, An efficient platform for screening expression and crystallization of glycoproteins produced in human cells, Nature Protocols, vol. 4, no. 4, pp. 592–604, 2009.CrossRefGoogle Scholar
  143. 143.
    W. Gu, X. Y. Zhu, N. Futai, B. S. Cho, and S. Takayama, Computerized microfluidic cell culture using elastomeric channels and Braille displays, Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 45, pp. 15861–15866, Nov. 2004.ADSCrossRefGoogle Scholar
  144. 144.
    C. Holtze, A. C. Rowat, J. J. Agresti, J. B. Hutchison, F. E. Angile, C. H. J. Schmitz, S. Koster, H. Duan, K. J. Humphry, R. A. Scanga, J. S. Johnson, D. Pisignano, and D. A. Weitz, Biocompatible surfactants for water-in-fluorocarbon emulsions, Lab on A Chip, vol. 8, no. 10, pp. 1632–1639, Oct. 2008.CrossRefGoogle Scholar
  145. 145.
    C. E. Sims and N. L. Allbritton, Analysis of single mammalian cells on-chip, Lab on A Chip, vol. 7, no. 4, pp. 423–440, 2007.CrossRefGoogle Scholar
  146. 146.
    A. Huebner, S. Sharma, M. Srisa-Art, F. Hollfelder, J. B. Edel, and A. J. deMello, Microdroplets: A sea of applications?, Lab on A Chip, vol. 8, pp. 1244–1254, 2008.CrossRefGoogle Scholar
  147. 147.
    S. L. Anna, N. Bontoux, and H. A. Stone, Formation of dispersions using “flow focusing” in microchannels, Applied Physics Letters, vol. 82, no. 3, pp. 364–366, Jan. 2003.ADSCrossRefGoogle Scholar
  148. 148.
    M. Joanicot and A. Ajdari, Applied physics - Droplet control for microfluidics, Science, vol. 309, no. 5736, pp. 887–888, Aug. 2005.CrossRefGoogle Scholar
  149. 149.
    T. Nisisako, T. Torii, and T. Higuchi, Droplet formation in a microchannel network, Lab on A Chip, vol. 2, no. 1, pp. 24–26, 2002.CrossRefGoogle Scholar
  150. 150.
    D. Malsch, N. Gleichmann, M. Kielpinski, G. +. Mayer, T. Henkel, D. Mueller, V. van Steijn, C. Kleijn, and M. Kreutzer, Dynamics of droplet formation at T-shaped nozzles with elastic feed lines, Microfluidics and Nanofluidics, Mar. 2009.Google Scholar
  151. 151.
    H. Song, J. D. Tice, and R. F. Ismagilov, A microfluidic system for controlling reaction networks in time, Angewandte Chemie-International Edition, vol. 42, no. 7, pp. 768–772, 2003.CrossRefGoogle Scholar
  152. 152.
    H. Song and R. F. Ismagilov, Millisecond kinetics on a microfluidic chip using nanoliters of reagents, Journal of the American Chemical Society, vol. 125, no. 47, pp. 14613–14619, Nov. 2003.CrossRefGoogle Scholar
  153. 153.
    B. Zheng, J. D. Tice, and R. F. Ismagilov, Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays, Analytical Chemistry, vol. 76, no. 17, pp. 4977–4982, Sept. 2004.CrossRefGoogle Scholar
  154. 154.
    I. Shestopalov, J. D. Tice, and R. F. Ismagilov, Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system, Lab on A Chip, vol. 4, no. 4, pp. 316–321, 2004.CrossRefGoogle Scholar
  155. 155.
    M. Y. He, J. S. Edgar, G. D. M. Jeffries, R. M. Lorenz, J. P. Shelby, and D. T. Chiu, Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets, Analytical Chemistry, vol. 77, no. 6, pp. 1539–1544, Mar. 2005.CrossRefGoogle Scholar
  156. 156.
    D. R. Link, S. L. Anna, D. A. Weitz, and H. A. Stone, Geometrically mediated breakup of drops in microfluidic devices, Physical Review Letters, vol. 92, no. 5, p. 054503, Feb. 2004.ADSCrossRefGoogle Scholar
  157. 157.
    J. D. Tice, H. Song, A. D. Lyon, and R. F. Ismagilov, Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers, Langmuir, vol. 19, no. 22, pp. 9127–9133, Oct. 2003.CrossRefGoogle Scholar
  158. 158.
    J. D. Tice, A. D. Lyon, and R. F. Ismagilov, Effects of viscosity on droplet formation and mixing in microfluidic channels, Analytica Chimica Acta, vol. 507, no. 1, pp. 73–77, Apr. 2004.CrossRefGoogle Scholar
  159. 159.
    H. Song, M. R. Bringer, J. D. Tice, C. J. Gerdts, and R. F. Ismagilov, Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels, Applied Physics Letters, vol. 83, no. 22, pp. 4664–4666, Dec. 2003.ADSCrossRefGoogle Scholar
  160. 160.
    M. R. Bringer, C. J. Gerdts, H. Song, J. D. Tice, and R. F. Ismagilov, Microfluidic systems for chemical kinetics that rely on chaotic mixing in droplets, Philosophical Transactions of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences, vol. 362, no. 1818, pp. 1087–1104, May 2004.ADSCrossRefGoogle Scholar
  161. 161.
    A. Gunther, S. A. Khan, M. Thalmann, F. Trachsel, and K. F. Jensen, Transport and reaction in microscale segmented gas-liquid flow, Lab on A Chip, vol. 4, no. 4, pp. 278–286, 2004.CrossRefGoogle Scholar
  162. 162.
    A. Gunther, M. Jhunjhunwala, M. Thalmann, M. A. Schmidt, and K. F. Jensen, Micromixing of miscible liquids in segmented gas-liquid flow, Langmuir, vol. 21, no. 4, pp. 1547–1555, Feb. 2005.CrossRefGoogle Scholar
  163. 163.
    S. A. Khan, A. Gunther, M. A. Schmidt, and K. F. Jensen, Microfluidic synthesis of colloidal silica, Langmuir, vol. 20, no. 20, pp. 8604–8611, Sept. 2004.CrossRefGoogle Scholar
  164. 164.
    P. Garstecki, M. A. Fischbach, and G. M. Whitesides, Design for mixing using bubbles in branched microfluidic channels, Applied Physics Letters, vol. 86, no. 24, p. 244108, June 2005.ADSCrossRefGoogle Scholar
  165. 165.
    K. Martin, T. Henkel, V. Baier, A. Grodrian, T. Schon, M. Roth, J. M. Kohler, and J. Metze, Generation of larger numbers of separated microbial populations by cultivation in segmented-flow microdevices, Lab on A Chip, vol. 3, no. 3, pp. 202–207, 2003.CrossRefGoogle Scholar
  166. 166.
    D. R. Link, E. Grasland-Mongrain, A. Duri, F. Sarrazin, Z. D. Cheng, G. Cristobal, M. Marquez, and D. A. Weitz, Electric control of droplets in microfluidic devices, Angewandte Chemie-International Edition, vol. 45, no. 16, pp. 2556–2560, 2006.CrossRefGoogle Scholar
  167. 167.
    K. Ahn, C. Kerbage, T. P. Hunt, R. M. Westervelt, D. R. Link, and D. A. Weitz, Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices, Applied Physics Letters, vol. 88, no. 2, p. 024104, Jan. 2006.ADSCrossRefGoogle Scholar
  168. 168.
    J. F. Edd, D. Di Carlo, K. J. Humphry, S. Koster, D. Irimia, D. A. Weitz, and M. Toner, Controlled encapsulation of single-cells into monodisperse picolitre drops, Lab on A Chip, vol. 8, no. 8, pp. 1262–1264, Aug. 2008.CrossRefGoogle Scholar
  169. 169.
    J. Q. Boedicker, L. Li, T. R. Kline, and R. F. Ismagilov, Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics, Lab on A Chip, vol. 8, no. 8, pp. 1265–1272, 2008.CrossRefGoogle Scholar
  170. 170.
    W. W. Shi, J. H. Qin, N. N. Ye, and B. C. Lin, Droplet-based microfluidic system for individual Caenorhabditis elegans assay, Lab on A Chip, vol. 8, no. 9, pp. 1432–1435, 2008.CrossRefGoogle Scholar
  171. 171.
    A. Huebner, L. F. Olguin, D. Bratton, G. Whyte, W. T. S. Huck, A. J. de Mello, J. B. Edel, C. Abell, and F. Hollfelder, Development of quantitative cell-based enzyme assays in microdroplets, Analytical Chemistry, vol. 80, no. 10, pp. 3890–3896, May 2008.CrossRefGoogle Scholar
  172. 172.
    A. Funfak, A. Brosing, M. Brand, and J. M. Kohler, Micro fluid segment technique for screening and development studies on Danio rerio embryos, Lab on A Chip, vol. 7, no. 9, pp. 1132–1138, 2007.CrossRefGoogle Scholar
  173. 173.
    A. Reichert, J. Felbel, M. Kielpinski, M. Urban, B. Steinbrecht, and T. Henkel, Micro Flow-Through Thermocycler with Simple Meandering Channel with Symmetric Temperature Zones for Disposable PCR-Devices in Microscope Slide Format, J. Bionic. Eng., vol. 5, pp. 291–298, 2008.CrossRefGoogle Scholar
  174. 174.
    Y. Schaerli, R. C. Wootton, T. Robinson, V. Stein, C. Dunsby, M. A. A. Neil, P. M. W. French, A. J. deMello, C. Abell, and F. Hollfelder, Continuous-Flow Polymerase Chain Reaction of Single-Copy DNA in Microfluidic Microdroplets, Analytical Chemistry, vol. 81, no. 1, pp. 302–306, 2009.CrossRefGoogle Scholar
  175. 175.
    M. Srisa-Art, A. J. deMello, and J. B. Edel, High-throughput DNA droplet assays using picoliter reactor volumes, Analytical Chemistry, vol. 79, no. 17, pp. 6682–6689, 2007.CrossRefGoogle Scholar
  176. 176.
    B. Zheng, J. D. Tice, L. S. Roach, and R. F. Ismagilov, A droplet-based, composite PDMS/glass capillary microfluidic system for evaluating protein crystallization conditions by microbatch and vapor-diffusion methods with on-chip X-ray diffraction, Angewandte Chemie-International Edition, vol. 43, no. 19, pp. 2508–2511, 2004.CrossRefGoogle Scholar
  177. 177.
    M. K. Yadav, C. J. Gerdts, R. Sanishvili, W. W. Smith, L. S. Roach, R. F. Ismagilov, P. Kuhn, and R. C. Stevens, In situ data collection and structure refinement from microcapillary protein crystallization, Journal of Applied Crystallography, vol. 38, pp. 900–905, Dec. 2005.CrossRefGoogle Scholar
  178. 178.
    L. S. Roach, H. Song, and R. F. Ismagilov, Controlling nonspecific protein adsorption in a plug-based microfluidic system by controlling interfacial chemistry using fluorous-phase surfactants, Analytical Chemistry, vol. 77, no. 3, pp. 785–796, Feb. 2005.CrossRefGoogle Scholar
  179. 179.
    B. Zheng, J. D. Tice, and R. F. Ismagilov, Formation of arrayed droplets of soft lithography and two-phase fluid flow, and application in protein crystallization, Advanced Materials, vol. 16, no. 15, pp. 1365–1368, Aug. 2004.CrossRefGoogle Scholar
  180. 180.
    B. Zheng, C. J. Gerdts, and R. F. Ismagilov, Using nanoliter plugs in microfluidics to facilitate and understand protein crystallization, Current Opinion in Structural Biology, vol. 15, no. 5, pp. 548–555, Oct. 2005.CrossRefGoogle Scholar
  181. 181.
    D. L. Chen, C. J. Gerdts, and R. F. Ismagilov, Using microfluidics to observe the effect of mixing on nucleation of protein crystals, Journal of the American Chemical Society, vol. 127, no. 27, pp. 9672–9673, July 2005.CrossRefGoogle Scholar
  182. 182.
    B. Zheng, L. S. Roach, and R. F. Ismagilov, Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets, Journal of the American Chemical Society, vol. 125, no. 37, pp. 11170–11171, Sept. 2003.CrossRefGoogle Scholar
  183. 183.
    N. G. Anderson, Computer Interfaced Fast Analyzers, Science, vol. 166, no. 3903, pp. 317–324, 1969.ADSCrossRefGoogle Scholar
  184. 184.
    M. Madou, J. Zoval, G. Y. Jia, H. Kido, J. Kim, and N. Kim, Lab on a CD, Annual Review of Biomedical Engineering, vol. 8, pp. 601–628, 2006.CrossRefGoogle Scholar
  185. 185.
    J. Ducrée, S. Haeberle, S. Lutz, S. Pausch, F.v. Stetten, and R. Zengerle, The centrifugal microfluidic Bio-Disk platform, Journal of Micromechanics and Microengineering, vol. 17, no. 7, p. S103–S115, 2007.ADSCrossRefGoogle Scholar
  186. 186.
    J. M. Koo and C. Kleinstreuer, Liquid flow in microchannels: experimental observations and computational analyses of microfluidics effects, Journal of Micromechanics and Microengineering, vol. 13, no. 5, pp. 568–579, Sept. 2003.ADSCrossRefGoogle Scholar
  187. 187.
    U. Abaxis Inc., “Abaxis Inc., USA, ” 2006.Google Scholar
  188. 188.
    C. T. Schembri, V. Ostoich, P. J. Lingane, T. L. Burd, and S. N. Buhl, Portable simultaneous multiple analyte whole-blood analyzer for point-of-care testing, Clin. Chem., vol. 38, no. 9, pp. 1665–1670, Sept. 1992.Google Scholar
  189. 189.
    C. T. Schembri, T. L. Burd, A. R. Kopfsill, L. R. Shea, and B. Braynin, Centrifugation and Capillarity Integrated Into A Multiple Analyte Whole-Blood Analyzer, Journal of Automatic Chemistry, vol. 17, no. 3, pp. 99–104, May 1995.CrossRefGoogle Scholar
  190. 190.
    M. Madou and G. J. Kellogg, The LabCD: A Centrifuge-Based Microfluidic Platform for Diagnostics, Proc. SPIE Systems and Technologies for Clinical Diagnostics and Drug Discovery, vol. 3259, pp. 80–93, 1998.ADSCrossRefGoogle Scholar
  191. 191.
    D. C. Duffy, H. L. Gilli, J. Lin, N. F. Sheppard, Jr., and G. J. Kellogg, Microfabricated Centrifugal Microfluidic Systems: Characterization and Multiple Enzymatic Assays, Analytical Chemistry, vol. 71, no. 20, pp. 4669–4678, 1999.CrossRefGoogle Scholar
  192. 192.
    G. Ekstrand, C. Holmquist, A. E. Örlefors, B. Hellman, A. Larsson, and P. Andersson, “Microfluidics in a Rotating CD,” 2000, pp. 311–314.Google Scholar
  193. 193.
    M. Madou, J. Lee, S. Daunert, S. Lai, and C.-H. Shih, Design and fabrication of cd-like microfluidic platforms for diagnostics: microfluidic functions, Biomedical Microdevices, vol. 3, no. 3, pp. 245–254, 2001.CrossRefGoogle Scholar
  194. 194.
    S. Haeberle, T. Brenner, H. P. Schlosser, R. Zengerle, and J. Ducrée, Centrifugal micromixer, Chemical Engineering & Technology, vol. 28, no. 5, pp. 613–616, May 2005.CrossRefGoogle Scholar
  195. 195.
    H. Cho, H. Y. Kim, J. Y. Kang, and T. S. Kim, How the capillary burst microvalve works, Journal of Colloid and Interface Science, vol. 306, no. 2, pp. 379–385, Feb. 2007.CrossRefGoogle Scholar
  196. 196.
    J. M. Chen, P. C. Huang, and M. G. Lin, Analysis and experiment of capillary valves for microfluidics on a rotating disk, Microfluidics and Nanofluidics, vol. 4, no. 5, pp. 427–437, May 2008.CrossRefGoogle Scholar
  197. 197.
    N. Honda, U. Lindberg, P. Andersson, S. Hoffman, and H. Takei, Simultaneous multiple immunoassays in a compact disc-shaped microfluidic device based on centrifugal force, Clinical Chemistry, vol. 51, no. 10, pp. 1955–1961, Oct. 2005.CrossRefGoogle Scholar
  198. 198.
    C. P. Steinert, J. Mueller-Dieckmann, M. Weiss, M. Roessle, R. Zengerle, and P. Koltay, “Miniaturized and Highly Parallel Protein Crystallization on a Microfluidic Disc,” Kobe, Japan: 2007, pp. 561–564.Google Scholar
  199. 199.
    S. Haeberle, T. Brenner, R. Zengerle, and J. Ducrée, Centrifugal extraction of plasma from whole blood on a rotating disk, Lab on A Chip, vol. 6, no. 6, pp. 776–781, June 2006.CrossRefGoogle Scholar
  200. 200.
    J. Ducree, S. Haeberle, S. Lutz, S. Pausch, F. von Stetten, and R. Zengerle, The centrifugal microfluidic bio-disk platform, Journal of Micromechanics and Microengineering, vol. 17, no. 7, pp. 103–115, July 2007.ADSCrossRefGoogle Scholar
  201. 201.
    D. Mark, T. Metz, S. Haeberle, S. Lutz, J. Ducrée, R. Zengerle, and F. von Stetten, Centrifugo-Pneumatic Valve for Metering of Highly Wetting Liquids on Centrifugal Microfluidic Platforms, Lab on A Chip, 2009.Google Scholar
  202. 202.
    D. H. Sharp, An Overview of Rayleigh-Taylor Instability, Physica D, vol. 12, no. 1–3, pp. 3–18, 1984.ADSzbMATHCrossRefGoogle Scholar
  203. 203.
    J. M. Park, Y. K. Cho, B. S. Lee, J. G. Lee, and C. Ko, Multifunctional microvalves control by optical illumination on nanoheaters and its application in centrifugal microfluidic devices, Lab on A Chip, vol. 7, no. 5, pp. 557–564, 2007.CrossRefGoogle Scholar
  204. 204.
    J. Steigert, M. Grumann, T. Brenner, K. Mittenbühler, T. Nann, J. Rühe, I. Moser, S. Haeberle, L. Riegger, J. Riegler, W. Bessler, R. Zengerle, and J. Ducrée, Integrated Sample Preparation, Reaction, and Detection on a High-frequency Centrifugal Microfluidic Platform, Journal of the Association for Laboratory Automation (JALA), vol. 10, no. 5, pp. 331–341, 2005.CrossRefGoogle Scholar
  205. 205.
    J. Steigert, M. Grumann, T. Brenner, L. Riegger, J. Harter, R. Zengerle, and J. Ducrée, Fully Integrated Whole Blood Testing by Real-Time Absorption Measurement on a Centrifugal Platform, Lab on A Chip, vol. 6, no. 8, pp. 1040–1044, 2006.CrossRefGoogle Scholar
  206. 206.
    J. V. Zoval and M. J. Madou, Centrifuge-based fluidic platforms, Proceedings of the IEEE, vol. 92, no. 1, pp. 140–153, Jan. 2004.CrossRefGoogle Scholar
  207. 207.
    S. Lutz, V. Reitenbach, D. Mark, J. Ducrée, R. Zengerle, and F. von Stetten, “Unidirectional Shake-Mode for mixing highly wetting fluids on Centrifugal Platforms,” 2008.Google Scholar
  208. 208.
    M. Grumann, A. Geipel, L. Riegger, R. Zengerle, and J. Ducrée, Batch-mode mixing on centrifugal microfluidic platforms, Lab on A Chip, vol. 5, no. 5, pp. 560–565, 2005.CrossRefGoogle Scholar
  209. 209.
    C. T. Schembri and M. P. Caren, “Method of mixing by intermittent centrifugal force,” US7147362, Dec. 12, 2006.Google Scholar
  210. 210.
    T. Brenner, T. Glatzel, R. Zengerle, and J. Ducrée, Frequency-dependent transversal flow control in centrifugal microfluidics, Lab on A Chip, vol. 5, no. 2, pp. 146–150, 2005.CrossRefGoogle Scholar
  211. 211.
    S. Haeberle, L. Naegele, R. Zengerle, and J. Ducrée, “A Digital Centrifugal Droplet Switch For Routing of Liquids,” Tokyo, Japan: 2006, pp. 570–572.Google Scholar
  212. 212.
    S. Gyros AB, “Gyros AB, Sweden, ” 2006.Google Scholar
  213. 213.
    G. Ekstrand and T. Thorsen, “Liquid Router,” WO Patent WO2005032999, 2005.Google Scholar
  214. 214.
    J. Kim, H. Kido, R. H. Rangel, and M. J. Madou, Passive flow switching valves on a centrifugal microfluidic platform, Sensors and Actuators B-Chemical, vol. 128, no. 2, pp. 613–621, Jan. 2008.CrossRefGoogle Scholar
  215. 215.
    J. L. Zhang, Q. Q. Guo, M. Liu, and J. Yang, A lab-on-CD prototype for high-speed blood separation, Journal of Micromechanics and Microengineering, vol. 18, no. 12, p. 125025, 2008.ADSCrossRefGoogle Scholar
  216. 216.
    G. J. Kellogg, T. E. Arnold, B. L. Carvalho, D. C. Duffy, and N. F. Sheppard, Jr., “Centrifugal Microfluidics: Applications,” 2000, pp. 239–242.Google Scholar
  217. 217.
    I. H. A. Badr, R. D. Johnson, M. J. Madou, and L. G. Bachas, Fluorescent ion-selective optode membranes incorporated onto a centrifugal microfluidics platform, Analytical Chemistry, vol. 74, no. 21, pp. 5569–5575, Nov. 2002.CrossRefGoogle Scholar
  218. 218.
    R. D. Johnson, I. H. Badr, G. Barrett, S. Lai, Y. Lu, M. J. Madou, and L. G. Bachas, Development of a fully integrated analysis system for ions based on ion-selective optodes and centrifugal microfluidics, Analytical Chemistry, vol. 73, no. 16, pp. 3940–3946, Aug. 2001.CrossRefGoogle Scholar
  219. 219.
    A. S. Watts, A. A. Urbas, E. Moschou, V. G. Gavalas, J. V. Zoval, M. Madou, and L. G. Bachas, Centrifugal Microfluidics with Integrated Sensing Microdome Optodes for Multiion Detection, Analytical Chemistry, vol. 79, no. 21, pp. 8046–8054, Nov. 2007.CrossRefGoogle Scholar
  220. 220.
    L. G. Puckett, E. Dikici, S. Lai, M. Madou, L. G. Bachas, and S. Daunert, Investigation into the applicability of the centrifugal microfluidics development of protein-platform for the ligand binding assays incorporating enhanced green fluorescent protein as a fluorescent reporter, Analytical Chemistry, vol. 76, no. 24, pp. 7263–7268, Dec. 2004.CrossRefGoogle Scholar
  221. 221.
    G. Jia, K. S. Ma, J. Kim, J. V. Zoval, R. Peytavi, M. G. Bergeron, and M. J. Madou, Dynamic automated DNA hybridization on a CD (compact disc) fluidic platform, Sensors and Actuators B: Chemical, vol. 114, no. 1, pp. 173–181, Mar. 2006.CrossRefGoogle Scholar
  222. 222.
    S. Lai, S. Wang, J. Luo, L. J. Lee, S. T. Yang, and M. J. Madou, Design of a compact disk-like microfluidic platform for enzyme-linked immunosorbent assay, Analytical Chemistry, vol. 76, no. 7, pp. 1832–1837, Apr. 2004.CrossRefGoogle Scholar
  223. 223.
    C. Lu, Y. Xie, Y. Yang, M. M. Cheng, C. G. Koh, Y. Bai, L. J. Lee, and Y. J. Juang, New valve and bonding designs for microfluidic biochips containing proteins, Analytical Chemistry, vol. 79, no. 3, pp. 994–1001, Feb. 2007.CrossRefGoogle Scholar
  224. 224.
    L. Riegger, J. Steigert, M. Grumann, S. Lutz, G. Olofsson, M. Khayyami, W. Bessler, K. Mittenbühler, R. Zengerle, and J. Ducrée, “Disk-based Parallel Chemiluminescent Detection of Diagnostic Markers for Acute Myocardial Infarction,” Istanbul, Turkey: IEEE-MEMS 2006 conference, 2006.Google Scholar
  225. 225.
    S. Lutz, P. Lang, I. Malki, D. Mark, J. Ducrée, R. Zengerle, and F. von Stetten, “Lab-on-a-Chip Cartridge for Processing of Immunoassays with Integrated Sample Preparation,” 2008.Google Scholar
  226. 226.
    B. S. Lee, J. N. Lee, J. M. Park, J. G. Lee, S. Kim, Y. K. Cho, and C. Ko, A fully automated immunoassay from whole blood on a disc, Lab on A Chip, vol. 9, pp. 1548–1555, 2009.CrossRefGoogle Scholar
  227. 227.
    Y. K. Cho, J. G. Lee, J. M. Park, B. S. Lee, Y. Lee, and C. Ko, One-step pathogen specific DNA extraction from whole blood on a centrifugal microfluidic device, Lab on A Chip, vol. 7, no. 5, pp. 565–573, Feb. 2007.CrossRefGoogle Scholar
  228. 228.
    S. SpinX Technologies, “SpinX Technologies, Switzerland,” 2006.Google Scholar
  229. 229.
    C. A. Burtis, N. G. Anderson, J. C. Mailen, C. D. Scott, T. O. Tiffany, and W. F. Johnson, Development of A Miniature Fast Analyzer, Clinical Chemistry, vol. 18, no. 8, pp. 753–761, 1972.Google Scholar
  230. 230.
    J. Ducrée, S. Haeberle, T. Brenner, T. Glatzel, and R. Zengerle, Patterning of flow and mixing in rotating radial microchannels, Microfluidics and Nanofluidics, vol. 2, no. 2, pp. 97–105, 2006.CrossRefGoogle Scholar
  231. 231.
    J. Ducrée, T. Brenner, S. Haeberle, T. Glatzel, and R. Zengerle, Multilamination of flows in planar networks of rotating microchannels, Microfluidics and Nanofluidics, vol. 2, no. 1, pp. 78–84, 2006.CrossRefGoogle Scholar
  232. 232.
    M. Grumann, J. Steigert, L. Riegger, I. Moser, B. Enderle, K. Riebeseel, G. Urban, R. Zengerle, and J. Ducrée, Sensitivity enhancement for colorimetric glucose assays on whole blood by on-chip beam-guidance, Biomedical Microdevices, vol. 8, no. 3, pp. 209–214, Sept. 2006.CrossRefGoogle Scholar
  233. 233.
    S. Haeberle, S. Pausch, R. Burger, S. Lutz, F. von Stetten, R. Zengerle, and J. Ducrée, “Automation of nucleid acid extraction by a coriolis-force actuated droplet router,” Paris, France: 2007, pp. 1231–1233.Google Scholar
  234. 234.
    J. Hoffmann, D. Mark, R. Zengerle, and F. von Stetten, “Liquid Reagent Storage and Release for Centrifugally Operated Lab-on-a-Chip Systems Based on a Burstable Seal,” 15 ed 2009.Google Scholar
  235. 235.
    A. P. Wong, M. Gupta, S. S. Shevkoplyas, and G. M. Whitesides, Egg beater as centrifuge: isolating human blood plasma from whole blood in resource-poor settings, Lab on A Chip, vol. 8, no. 12, pp. 2032–2037, 2008.CrossRefGoogle Scholar
  236. 236.
    H. Kido, M. Micic, D. Smith, J. Zoval, J. Norton, and M. Madou, A novel, compact disk-like centrifugal microfluidics system for cell lysis and sample homogenization, Colloids and Surfaces B-Biointerfaces, vol. 58, no. 1, pp. 44–51, 2007.CrossRefGoogle Scholar
  237. 237.
    S. A. Lange, G. Roth, S. Wittemann, T. Lacoste, A. Vetter, J. Grassle, S. Kopta, M. Kolleck, B. Breitinger, M. Wick, J. K. H. Horber, S. Dubel, and A. Bernard, Measuring biomolecular binding events with a compact disc player device, Angewandte Chemie-International Edition, vol. 45, no. 2, pp. 270–273, 2006.CrossRefGoogle Scholar
  238. 238.
    M. Focke, B. Faltin, T. Hoesel, C. Mueller, J. Ducrée, R. Zengerle, and F. von Stetten, “Blow molding of polymer foils for rapid prototyping of microfluidic cartridges,” 2008, pp. 988–990.Google Scholar
  239. 239.
    R. A. Potyrailo, W. G. Morris, A. M. Leach, T. M. Sivavec, M. B. Wisnudel, and S. Boyette, Analog Signal Acquisition from Computer Optical Disk Drives for Quantitative Chemical Sensing, Analytical Chemistry, vol. 78, no. 16, pp. 5893–5899, Aug. 2006.CrossRefGoogle Scholar
  240. 240.
    A. Penrose, P. Myers, K. Bartle, and S. McCrossen, Development and assess-ment of a miniaturised centrifugal chromatograph for reversed-phase separations in micro-channels, The Analyst, vol. 129, no. 8, pp. 704–709, 2004.ADSCrossRefGoogle Scholar
  241. 241.
    N. Sasaki, T. Kitamori, and H. B. Kim, AC electroosmotic micromixer for chemical processing in a microchannel, Lab on A Chip, vol. 6, no. 4, pp. 550–554, 2006.CrossRefGoogle Scholar
  242. 242.
    P. W. Atkins, Physikalische Chemie 1987, pp. 781–802.Google Scholar
  243. 243.
    C. Y. Lee, G. B. Lee, J. L. Lin, F. C. Huang, and C. S. Liao, Integrated microfluidic systems for cell lysis, mixing/pumping and DNA amplification, Journal of Micromechanics and Microengineering, vol. 15, no. 6, pp. 1215–1223, June 2005.ADSCrossRefGoogle Scholar
  244. 244.
    D. E. Raymond, A. Manz, and H. M. Widmer, Continuous Sample Pretreatment Using A Free-Flow Electrophoresis Device Integrated Onto A Silicon Chip, Analytical Chemistry, vol. 66, no. 18, pp. 2858–2865, Sept. 1994.CrossRefGoogle Scholar
  245. 245.
    H. Morgan, M. P. Hughes, and N. G. Green, Separation of submicron bioparticles by dielectrophoresis, Biophysical Journal, vol. 77, no. 1, pp. 516–525, July 1999.ADSCrossRefGoogle Scholar
  246. 246.
    U. Zimmermann and J. Vienken, Electric Field-Induced Cell-To-Cell Fusion, Journal of Membrane Biology, vol. 67, no. 3, pp. 165–182, 1982.Google Scholar
  247. 247.
    R. Krupke, F. Hennrich, H. von Lohneysen, and M. M. Kappes, Separation of metallic from semiconducting single-walled carbon nanotubes, Science, vol. 301, no. 5631, pp. 344–347, July 2003.ADSCrossRefGoogle Scholar
  248. 248.
    A. Manz, D. J. Harrison, E. M. J. Verpoorte, J. C. Fettinger, A. Paulus, H. Ludi, and H. M. Widmer, Planar Chips Technology for Miniaturization and Integration of Separation Techniques Into Monitoring Systems - Capillary Electrophoresis on A Chip, Journal of Chromatography, vol. 593, no. 1–2, pp. 253–258, Feb. 1992.CrossRefGoogle Scholar
  249. 249.
    D. J. Harrison, K. Fluri, K. Seiler, Z. H. Fan, C. S. Effenhauser, and A. Manz, Micromachining A Miniaturized Capillary Electrophoresis-Based Chemical-Analysis System on A Chip, Science, vol. 261, no. 5123, pp. 895–897, Aug. 1993.ADSCrossRefGoogle Scholar
  250. 250.
    C. S. Effenhauser, A. Manz, and H. M. Widmer, Glass Chips for High-Speed Capillary Electrophoresis Separations with Submicrometer Plate Heights, Analytical Chemistry, vol. 65, no. 19, pp. 2637–2642, Oct. 1993.CrossRefGoogle Scholar
  251. 251.
    L. Wang, J. Lu, S. A. Marukenko, E. S. Monuki, L. A. Flanagan, and A. P. Lee, Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells, Electrophoresis, vol. 30, no. 5, pp. 782–791, Mar. 2009.CrossRefGoogle Scholar
  252. 252.
    P. Patel and G. H. Markx, Dielectric measurement of cell death, Enzyme and Microbial Technology, vol. 43, no. 7, pp. 463–470, Dec. 2008.CrossRefGoogle Scholar
  253. 253.
    C. J. Huang, A. L. Chen, L. Wang, M. Guo, and J. Yu, Electrokinetic measurements of dielectric properties of membrane for apoptotic HL-60 cells on chip-based device, Biomedical Microdevices, vol. 9, no. 3, pp. 335–343, June 2007.CrossRefGoogle Scholar
  254. 254.
    J. M. Ramsey, S. C. Jacobson, and M. R. Knapp, Microfabricated Chemical Measurement Systems, Nature Medicine, vol. 1, no. 10, pp. 1093–1096, Oct. 1995.CrossRefGoogle Scholar
  255. 255.
    U. Caliper Life Sciences, “Caliper Life Sciences, USA,” 2007.Google Scholar
  256. 256.
    U. Agilent Technologies Inc., “Agilent Technologies Inc., USA,” 2007.Google Scholar
  257. 257.
    J. Cheng, E. L. Sheldon, L. Wu, A. Uribe, L. O. Gerrue, J. Carrino, M. J. Heller, and J. P. O’Connell, Preparation and hybridization analysis of DNA/ RNA from E-coli on microfabricated bioelectronic chips, Nature Biotechnology, vol. 16, no. 6, pp. 541–546, 1998.CrossRefGoogle Scholar
  258. 258.
    W. Kohlrausch, Leitfaden der Praktischen Physik, 31 ed BiblioBazaar, 1875.Google Scholar
  259. 259.
    G. Lippmann, Relations entre les phénomènes électrique et capillaries, Ann. Chim. Phys., vol. 5, pp. 494–549, 1875.Google Scholar
  260. 260.
    F. Mugele and J. C. Baret, Electrowetting: From basics to applications, Journal of Physics-Condensed Matter, vol. 17, no. 28, p. R705–R774, July 2005.ADSCrossRefGoogle Scholar
  261. 261.
    Lee, H. Moon, J. Fowler, T. Schoellhammer, and C. J. Kim, Electrowetting and electrowetting-on-dielectric for microscale liquid handling, Sensors and Actuators A-Physical, vol. 95, no. 2–3, pp. 259–268, Jan. 2002.Google Scholar
  262. 262.
    M. G. Pollack, R. B. Fair, and A. D. Shenderov, Electrowetting-based actuation of liquid droplets for microfluidic applications, Applied Physics Letters, vol. 77, no. 11, pp. 1725–1726, Sept. 2000.ADSCrossRefGoogle Scholar
  263. 263.
    J. Lee and C. J. Kim, Surface-tension-driven microactuation based on continuous electrowetting, Journal of Microelectromechanical Systems, vol. 9, no. 2, pp. 171–180, June 2000.zbMATHCrossRefGoogle Scholar
  264. 264.
    D. Chatterjee, B. Hetayothin, A. R. Wheeler, D. J. King, and R. L. Garrell, Droplet-based microfluidics with nonaqueous solvents and solutions, Lab on A Chip, vol. 6, no. 2, pp. 199–206, Feb. 2006.CrossRefGoogle Scholar
  265. 265.
    V. Srinivasan, V. K. Pamula, and R. B. Fair, An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids, Lab on A Chip, vol. 4, no. 4, pp. 310–315, 2004.CrossRefGoogle Scholar
  266. 266.
    H. Ren, R. B. Fair, and M. G. Pollack, Automated on-chip droplet dispensing with volume control by electro-wetting actuation and capacitance metering, Sensors and Actuators B-Chemical, vol. 98, no. 2–3, pp. 319–327, Mar. 2004.CrossRefGoogle Scholar
  267. 267.
    J. Berthier, P. Clementz, O. Raccurt, D. Jary, P. Claustre, C. Peponnet, and Y. Fouillet, Computer aided design of an EWOD microdevice, Sensors and Actuators A-Physical, vol. 127, no. 2, pp. 283–294, Mar. 2006.CrossRefGoogle Scholar
  268. 268.
    M. G. Pollack, A. D. Shenderov, and R. B. Fair, Electrowetting-based actuation of droplets for integrated microfluidics, Lab on A Chip, vol. 2, no. 2, pp. 96–101, 2002.CrossRefGoogle Scholar
  269. 269.
    P. Paik, V. K. Pamula, M. G. Pollack, and R. B. Fair, Electrowetting-based droplet mixers for microfluidic systems, Lab on A Chip, vol. 3, no. 1, pp. 28–33, 2003.CrossRefGoogle Scholar
  270. 270.
    P. Paik, V. K. Pamula, and R. B. Fair, Rapid droplet mixers for digital microfluidic systems, Lab on A Chip, vol. 3, no. 4, pp. 253–259, 2003.CrossRefGoogle Scholar
  271. 271.
    A. R. Wheeler, H. Moon, C. J. Kim, J. A. Loo, and R. L. Garrell, Electrowetting-based microfluidics for analysis of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry, Analytical Chemistry, vol. 76, no. 16, pp. 4833–4838, Aug. 2004.CrossRefGoogle Scholar
  272. 272.
    Y. H. Chang, G. B. Lee, F. C. Huang, Y. Y. Chen, and J. L. Lin, Integrated polymerase chain reaction chips utilizing digital microfluidics, Biomedical Microdevices, vol. 8, no. 3, pp. 215–225, 2006.CrossRefGoogle Scholar
  273. 273.
    R. B. Fair, Digital microfluidics: is a true lab-on-a-chip possible?, Microfluidics and Nanofluidics, vol. 3, no. 3, pp. 245–281, 2007.CrossRefGoogle Scholar
  274. 274.
    A. Wixforth, Acoustically driven planar microfluidics, Superlattices and Microstructures, vol. 33, no. 5–6, pp. 389–396, May 2003.ADSCrossRefGoogle Scholar
  275. 275.
    A. Wixforth, C. Strobl, C. Gauer, A. Toegl, J. Scriba, and Z. von Guttenberg, Acoustic manipulation of small droplets, Analytical and Bioanalytical Chemistry, vol. 379, no. 7–8, pp. 982–991, Aug. 2004.Google Scholar
  276. 276.
    D. Beyssen, L. Le Brizoual, O. Elmazria, and P. Alnot, Microfluidic device based on surface acoustic wave, Sensors and Actuators B-Chemical, vol. 118, no. 1–2, pp. 380–385, Oct. 2006.CrossRefGoogle Scholar
  277. 277.
    M. K. Tan, J. R. Friend, and L. Y. Yeo, Microparticle collection and concentration via a miniature surface acoustic wave device, Lab on A Chip, vol. 7, no. 5, pp. 618–625, 2007.CrossRefGoogle Scholar
  278. 278.
    Z. Guttenberg, H. Muller, H. Habermuller, A. Geisbauer, J. Pipper, J. Felbel, M. Kielpinski, J. Scriba, and A. Wixforth, Planar chip device for PCR and hybridization with surface acoustic wave pump, Lab on A Chip, vol. 5, no. 3, pp. 308–317, 2005.CrossRefGoogle Scholar
  279. 279.
    S. Fox, S. Farr-Jones, L. Sopchak, A. Boggs, and J. Comley, High-Throughput Screening: Searching for Higher Productivity, Journal of Biomolecular Screening, vol. 9, no. 4, pp. 354–358, Aug. 2004.CrossRefGoogle Scholar
  280. 280.
    R. P. Hertzberg and A. J. Pope, High-throughput screening: new technology for the 21st century, Current Opinion in Chemical Biology, vol. 4, no. 4, pp. 445–451, Aug. 2000.CrossRefGoogle Scholar
  281. 281.
    O. Ramstrom, T. Bunyapaiboonsri, S. Lohmann, and J. M. Lehn, Chemical biology of dynamic combinatorial libraries, Biochimica et Biophysica Acta-General Subjects, vol. 1572, no. 2–3, pp. 178–186, Sept. 2002.CrossRefGoogle Scholar
  282. 282.
    D. M. Brown, M. Pellecchia, and E. Ruoslahti, Drug identification through in vivo screening of chemical libraries, Chembiochem, vol. 5, no. 6, pp. 871–875, June 2004.CrossRefGoogle Scholar
  283. 283.
    U. F. Vogel and B. D. Bueltmann, Simple, inexpensive, and precise paraffin tissue microarrays constructed with a conventional microcompound table and a drill grinder, American Journal of Clinical Pathology, vol. 126, no. 3, pp. 342–348, Sept. 2006.CrossRefGoogle Scholar
  284. 284.
    J. F. Desnottes, New targets and strategies for the development of antibacterial agents, Trends in Biotechnology, vol. 14, no. 4, pp. 134–140, Apr. 1996.CrossRefGoogle Scholar
  285. 285.
    S. B. Rawool and K. V. Venkatesh, Steady state approach to model gene regulatory networks - Simulation of microarray experiments, Biosystems, vol. 90, no. 3, pp. 636–655, Nov. 2007.CrossRefGoogle Scholar
  286. 286.
    G. H. W. Sanders and A. Manz, Chip-based microsystems for genomic and proteomic analysis, Trac-Trends in Analytical Chemistry, vol. 19, no. 6, pp. 364–378, June 2000.CrossRefGoogle Scholar
  287. 287.
    A. Brazma, Minimum Information About a Microarray Experiment (MIAME) - Successes, Failures, Challenges, Thescientificworldjournal, vol. 9, pp. 420–423, 2009.CrossRefGoogle Scholar
  288. 288.
    P. Pantano and D. R. Walt, Ordered nanowell arrays, Chemistry of Materials, vol. 8, no. 12, pp. 2832–2835, 1996.CrossRefGoogle Scholar
  289. 289.
    M. Margulies, M. Egholm, W. E. Altman, S. Attiya, J. S. Bader, L. A. Bemben, J. Berka, M. S. Braverman, Y. J. Chen, Z. T. Chen, S. B. Dewell, L. Du, J. M. Fierro, X. V. Gomes, B. C. Godwin, W. He, S. Helgesen, C. H. Ho, G. P. Irzyk, S. C. Jando, M. L. I. Alenquer, T. P. Jarvie, K. B. Jirage, J. B. Kim, J. R. Knight, J. R. Lanza, J. H. Leamon, S. M. Lefkowitz, M. Lei, J. Li, K. L. Lohman, H. Lu, V. B. Makhijani, K. E. Mcdade, M. P. McKenna, E. W. Myers, E. Nickerson, J. R. Nobile, R. Plant, B. P. Puc, M. T. Ronan, G. T. Roth, G. J. Sarkis, J. F. Simons, J. W. Simpson, M. Srinivasan, K. R. Tartaro, A. Tomasz, K. A. Vogt, G. A. Volkmer, S. H. Wang, Y. Wang, M. P. Weiner, P. G. Yu, R. F. Begley, and J. M. Rothberg, Genome sequencing in microfabricated high-density picolitre reactors, Nature, vol. 437, no. 7057, pp. 376–380, Sept. 2005.ADSGoogle Scholar
  290. 290.
    D. R. Walt, Molecular biology - Bead-based fiber-optic arrays, Science, vol. 287, no. 5452, pp. 451–452, Jan. 2000.CrossRefGoogle Scholar
  291. 291.
    A. C. Pease, D. Solas, E. J. Sullivan, M. T. Cronin, C. P. Holmes, and S. P. A. Fodor, Light-Generated Oligonucleotide Arrays for Rapid DNA-Sequence Analysis, Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 11, pp. 5022–5026, May 1994.ADSCrossRefGoogle Scholar
  292. 292.
    S. A. Dunbar, C. A. Vander Zee, K. G. Oliver, K. L. Karem, and J. W. Jacobson, Quantitative, multiplexed detection of bacterial pathogens: DNA and protein applications of the Luminex LabMAP system, J. Microbiol. Methods, vol. 53, no. 2, pp. 245–252, May 2003.CrossRefGoogle Scholar
  293. 293.
    Handbook Luminex Beadarray,” 2009.Google Scholar
  294. 294.
    K. L. Gunderson, S. Kruglyak, M. S. Graige, F. Garcia, B. G. Kermani, C. F. Zhao, D. P. Che, T. Dickinson, E. Wickham, J. Bierle, D. Doucet, M. Milewski, R. Yang, C. Siegmund, J. Haas, L. X. Zhou, A. Oliphant, J. B. Fan, S. Barnard, and M. S. Chee, Decoding randomly ordered DNA arrays, Genome Research, vol. 14, no. 5, pp. 870–877, May 2004.CrossRefGoogle Scholar
  295. 295.
    J. B. Fan, K. L. Gunderson, M. Bibikova, J. M. Yeakley, J. Chen, E. W. Garcia, L. L. Lebruska, M. Laurent, R. Shen, and D. Barker, Illumina universal bead arrays, Dna Microarrays Part A: Array Platforms and Wet-Bench Protocols, vol. 410, p. 57–+, 2006.CrossRefGoogle Scholar
  296. 296.
    M. Ronaghi, S. Karamohamed, B. Pettersson, M. Uhlen, and P. Nyren, Real-time DNA sequencing using detection of pyrophosphate release, Analytical Biochemistry, vol. 242, no. 1, pp. 84–89, Nov. 1996.CrossRefGoogle Scholar
  297. 297.
    VeraCode Research Guide,” 2007.Google Scholar
  298. 298.
    D. Ryan, M. Rahimi, J. Lund, R. Mehta, and B. A. Parviz, Toward nanoscale genome sequencing, Trends in Biotechnology, vol. 25, no. 9, pp. 385–389, 2007.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • D. Mark
    • 1
  • S. Haeberle
    • 1
    • 2
  • G. Roth
    • 1
    • 2
  • F. Von Stetten
    • 1
    • 2
  • R. Zengerle
    • 1
    • 2
  1. 1.HSG-IMIT - Institut für Mikro- und InformationstechnikVillingen-SchwenningenGermany
  2. 2.Laboratory for MEMS Applications, Department of Microsystems Engineering (IMTEK)University of FreiburgFreiburgGermany

Personalised recommendations