The Forensic Disciplines: Some Areas of Actual or Potential Application

Chapter
Part of the Law, Governance and Technology Series book series (LGTS, volume 5)

Abstract

We first begin with an artificial intelligence approach to crime scenario modelling once a dead body has been found. We then turn to a panoply of contexts and approaches to the processing of human faces: face recognition methods and tools for identification; foreseeing how aging would affect a face (e.g., of a child who went missing); facial expression recognition; digital image forensics (with doctored photographs); facial reconstruction from skeletal remains; and factors in portraiture analysed in the TIMUR episodic formulae model. Having begun with these two major areas (crime scenario modelling, and face processing), we take a broad view of the forensic disciplines of expert opinion, and the sometimes controversial role of statistics in them. We then consider the contribution to forensic science of anthropology and archaeology, as well as software tools for human anatomy. Next, we turn to forensic geology and techniques from geophysics; scent-detection and electronic noses; forensic palynology and its databases; computing in environmental forensics; and forensic engineering. Two large sections, each internally subdivided into nine units, conclude this chapter: “Individual Identification”, and “Bloodstain Pattern Analysis, and the Use of Software for Determining the Angle of Impact of Blood Drops”. The former begins with a history of identification methods, and continues with DNA evidence, and a controversy among statisticians concerning this; we then discuss human fingerprints, and growing skepticism concerning reliability of identification by fingerprints. We then turn to computational techniques for fingerprint recognition, and having surveyed these, we proceed to describe in detail two such techniques.

References

  1. Ackerman, M. J. (1995). Clinician’s guide to child custody evaluations. New York: Wiley.Google Scholar
  2. Agur, A., Ng-Thow-Hing, V., Ball, K., Fiume, E., & McKee, N. (2003). Documentation and three-dimensional modelling of human soleus muscle architecture. Clinical Anatomy, 16(4), 285–293.CrossRefGoogle Scholar
  3. Akin, L. L. (2004). Blood spatter interpretation at crime and accident scenes: A step by step guide for medicolegal investigators. Austin, TX: On Scene Forensics.Google Scholar
  4. Aitken, C. (1995). Statistics and the evaluation of evidence for forensic scientists. Chichester: Wiley.Google Scholar
  5. Aitken, C., & Taroni, F. (2004). Statistics and the evaluation of evidence. Chichester: Wiley.CrossRefGoogle Scholar
  6. Aitken, C., Taroni, F., & Garbolino, P. (2003). A graphical model for the evaluation of cross-transfer evidence in DNA profiles. Theoretical Population Biology, 63(3), 179–190.CrossRefGoogle Scholar
  7. Allen, J. F. (1983b). Maintaining knowledge about temporal intervals. Communications of the ACM, 26, 832–843.CrossRefGoogle Scholar
  8. Allen, J. F. (1984). Towards a general theory of action and time. Artificial Intelligence, 23(2), 123–154.CrossRefGoogle Scholar
  9. Allen, R. J. (1991). The nature of juridical proof. Cardozo Law Review, 13, 373–422.Google Scholar
  10. Allen, R. J., & Pardo, M. S. (2007a). The problematic value of mathematical models of evidence. Journal of Legal Studies, 36, 107–140.CrossRefGoogle Scholar
  11. Alur, R, Henzinger, T. A., & Kupferman, O. (2002). Alternating-time temporal logic. Journal of the ACM, 49(5), 672–713.CrossRefGoogle Scholar
  12. Anderson, G. S. (2005). Forensic entomology. In S. H. James & J. J. Nordby (Eds.), Forensic science: An introduction to scientific and investigative techniques (2nd ed.). Boca Raton, FL: CRC Press. Also in 3rd edition, 2009.Google Scholar
  13. Ardrey, B. (1994). Mass spectrometry in the forensic sciences. (VG Monographs in Mass Spectrometry.) Manchester: Fisons Instruments.Google Scholar
  14. Aulsebrook, W. A., Iscan, M. Y., Slabbert, J. H., & Becker, P. (1995). Superimposition and reconstruction in forensic facial identification: A survey. Forensic Science International, 75(2/3), 101–120.CrossRefGoogle Scholar
  15. Baber, C. (2010). Distributed cognition at the crime scene. AI & Society, 25, 423–432. doi://10.1007/s00146 010 0274 6CrossRefGoogle Scholar
  16. Baddeley, A. D. (1979). Applied cognitive and cognitive applied psychology: The case of face recognition. In L. G. Nilsson (Ed.), Perspectives on memory research. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  17. Balding, D. J. (2005). Weight-of-evidence for forensic DNA profiles. Chichester: Wiley.CrossRefGoogle Scholar
  18. Balding, D. J., & Donnelly, P. (1995). Inferring identity from DNA profile evidence. Proceedings of the National Academy of Sciences, USA, 92(25), 11741–11745.CrossRefGoogle Scholar
  19. Baldus, D., & Cole, J. W. L. (1980). Statistical proof of discrimination. Colorado Springs, CO: Shepard’s/McGraw-Hill.Google Scholar
  20. Ballim, A., By, T., Wilks, Y., & Liske, C. (2001). Modelling agent attitudes in legal reasoning. Computing and Informatics, 20(6), 581–624.Google Scholar
  21. Ballou, S. (2001). Wigs and the significance of one fiber. Chapter 2 In M. M. Houck (Ed.), Mute witnesses: Trace evidence analysis. London: Academic.Google Scholar
  22. Barnden, J. A. (2001). Uncertain reasoning about agents’ beliefs and reasoning. Artificial Intelligence and Law, 9(2/3), 115–152.CrossRefGoogle Scholar
  23. Bauer-Bernet, H. (1986). Temporal aspects of the formalization and computerization of law. In A. A. Martino & F. Socci Natali (Eds.), Automated analysis of legal texts: Logic, informatics, law (pp. 451–472). Amsterdam: North-Holland.Google Scholar
  24. Belfrage, H. (1995). Variability in forensic psychiatric decisions: Evidence for a positive crime preventive effect with mentally disordered violent offenders? Studies in Crime and Crime Prevention, 4(1), 119–123.Google Scholar
  25. Bergslien, E., Bush, P., & Bush, M. (2006). Application of field portable Xray fluorescence (FPXRF) spectrometry in forensic and environmental geology: Theory and examples (abstract). In A. Ruffell (Ed.), Abstract book of geoscientists at crime scenes: First, inaugural meeting of the Geological Society of London, 20 December 2006 (pp. 17–20). London: Forensic Geoscience Group. http://www.geolsoc.org.uk/pdfs/FGtalks&abs_pro.pdf.Google Scholar
  26. Berlière, J.-M. (2005). L’Affaire Scheffer: une victoire de la science contre le crime? La première identification d’un assassin à l’aide de ses empreintes digitales (octobre 1902). Les Cahiers de la sécurité, 56(1), 349–360. Posted at http://www.inhes.interieur.gouv.fr/fichiers/CS56BerliereINHES2005.pdf by the Institut national des hautes études de sécurité (INHES), France.Google Scholar
  27. Bernez, M. O. (1994). Anatomy and aesthetics: Gérard de Lairesse’s illustrations for Bidloo’s Anatomia Humani Corporis. In M. Baridon (Ed.), Interfaces: Image, texte, langage, 5 (pp. 207–229). Dijon, France: Université de Bourgogne.Google Scholar
  28. Best, E., & Hall, J. (1992). The box calculus: A new causal algebra with multilabel communication. (Technical Report Series, 373.) Newcastle upon Tyne, England: University of Newcastle upon Tyne, Computing Laboratory.Google Scholar
  29. Bettini, C., Jajodia, S., & Wang, S. (2000). Time granularities in databases, data mining, and temporal reasoning. Berlin: Springer.Google Scholar
  30. Bettini, C., Wang, X. S., & Jajodia, S. (2002). Solving multi-granularity temporal constraint networks. Artificial Intelligence, 140(1/2), 107–152.CrossRefGoogle Scholar
  31. Bevan, B. W. (1991). The search for graves. Geophysics, 56, 1310–1319.CrossRefGoogle Scholar
  32. Bevel, T., & Gardner, R. M. (2008). Bloodstain pattern analysis, with an introduction to crime scene reconstruction (3rd ed.). (CRC Series in Practical Aspects of Criminal and Forensic Investigations.) Boca Raton, FL: CRC Press (of Taylor & Francis). The 1st edn. was of 1997, and the 2nd edn. was of 2002.CrossRefGoogle Scholar
  33. Bex, F., Bench-Capon, T., & Atkinson, K. (2009). Did he jump or was he pushed? Abductive practical reasoning. Artificial Intelligence and Law, 17(2), 79–99. http://www.computing.dundee.ac.uk/staff/florisbex/Papers/AILaw09.pdf CrossRefGoogle Scholar
  34. Biermann, T. W., & Grieve, M. C. (1996). A computerized data base of mail order garments: A contribution toward estimating the frequency of fibre types found in clothing. Part 1: The system and its operation. Part 2: The content of the data bank and its statistical evaluation. Forensic Science International, 77(1/2), 75–92. Amsterdam: Elsevier.CrossRefGoogle Scholar
  35. Bistarelli, S., Santini, F., & Vaccarelli, A. (2006). An asymmetric fingerprint matching algorithms for Java CardTM. Pattern Analysis Applications, 9, 359–376. doi://10.1007/s10044 006 0048 4CrossRefGoogle Scholar
  36. Boddington, A., Garland, A. N., & Janaway, R. C. (Eds.). (1987). Death, decay and reconstruction: Approaches to archaeology and forensic science. Manchester: Manchester University Press.Google Scholar
  37. Bodziak, W. J. (2005a). Forensic tire impression and tire track evidence. Chapter 18 In S. H. James & J. J. Nordby (Eds.), Forensic science: An introduction to scientific and investigative techniques (2nd ed.). Boca Raton, FL: CRC Press. Also in 3rd edition, 2009.Google Scholar
  38. Bohan, T. L. (1991). Computer-aided accident reconstruction: Its role in court (SAE Technical Paper Series (12 p.)). Warrendale, PA: Society of Automotive Engineers (SAE).CrossRefGoogle Scholar
  39. Bologna, J., & Lindquist, R. J. (1995). Fraud auditing and forensic accounting: New tools and techniques (2nd ed.). New York: Wiley.Google Scholar
  40. Bookspan, S., Gravel, A. J., & Corley, J. (2002). Site history: The first tool of the environmental forensic team. Chapter 2 In B. L. Murphy & R. D. Morrison (Eds.), Introduction to environmental forensics (pp. 19–42). San Diego, CA & London: Academic.Google Scholar
  41. Bowers, M. C. (2002). Forensic dentistry: A field investigator’s handbook. London: Academic.Google Scholar
  42. Brenner, J. C. (2000). Forensic science glossary. Boca Raton, FL: CRC Press.Google Scholar
  43. Brown, C. T. (1989a, June). Relating Petri nets to formulae of linear logic (Internal report, CSR 304 89). Edinburgh, Scotland: Department of Computer Science, University of Edinburgh.Google Scholar
  44. Brown, C. T. (1989b, November). Petri nets as quantales. Internal report, CSR 314 89. Edinburgh, Scotland: Department of Computer Science, University of Edinburgh.Google Scholar
  45. Bruce, V., & Hancock, P. (2002). CRIME-VUs: Combined recall images from multiple experts and viewpoints. Scotland: Department of Psychology, University of Stirling. http://www.stir.ac.uk/Departments/HumanSciences/Psychology/crimevus/index.htm Google Scholar
  46. Bruce, V., Henderson, Z., Greenwood, K., Hancock, P. J. B., Burton, A. M., & Miller, P. I. (1999). Verification of face identities from images captured on video. Journal of Experimental Psychology: Applied, 5(4), 339–360.CrossRefGoogle Scholar
  47. Bruce, V., & Young, A. W. (1986). Understanding face recognition. British Journal of Psychology, 77, 305–327.CrossRefGoogle Scholar
  48. Bryant, V. M., Jr., & Mildenhall, D. C. (1996). Forensic palynology in the United States of America. Palynology, 14, 193–208.CrossRefGoogle Scholar
  49. Bull, R., & Carson, D. (1995). Handbook of psychology in legal contexts. Chichester: Wiley.Google Scholar
  50. Burton, A. M., Bruce, V., & Hancock, P. J. B. (1999). From pixels to people: A model of familiar face recognition. Cognitive Science, 23(1), 1–31.CrossRefGoogle Scholar
  51. Burton, A. M., Miller, P., Bruce, V., Hancock, P. J. B., & Henderson, Z. (2001). Human and automatic face recognition: A comparison across image formats. Vision Research, 41, 3185–3195.CrossRefGoogle Scholar
  52. Butler, J. M. (2001). Forensic DNA typing: Biology and technology behind STR markers. London: Academic.Google Scholar
  53. Caldwell, C., & Johnston, V. S. (1991). Tracking a criminal suspect through ‘face-space’ with a genetic algorithm. In R. Belew & L. Booker (Eds.), Proceedings of the fourth international conference on genetic algorithms (pp. 416–421). San Mateo, CA: Morgan Kaufmann.Google Scholar
  54. Carter, A. L. (2001a). The directional analysis of bloodstain patterns theory and experimental validation. Canadian Society for Forensic Science Journal, 34(4), 173–189.Google Scholar
  55. Carter, A. L. (2001b). Carter’s compendium for bloodstain analysis with computers: Directional analysis of bloodstain patterns. Ottawa, ON: Forensic Computing of Ottawa Inc. BackTrack Analysis page (electronic book provided with BackTrack Suite).Google Scholar
  56. Carter, A. L., Illes, M., Maloney, K., Yamashita, A. B., Allen, B., Brown, B., et al. (2005). Further Validation of the backtrack™ computer program for bloodstain pattern analysis: Precision and accuracy. IABPA News,54 21(3), 15–22.Google Scholar
  57. Catts, E. P., & Goff, M. L. (1992). Forensic entomology in criminal investigations. Annual Review of Entomology, 37, 253–272.CrossRefGoogle Scholar
  58. Catts, E. P., & Haskell, N. H. (1990). Entomology & death: A procedural guide. Clemson, SC: Joyce’s Print Shop.Google Scholar
  59. Champod, C. (1995). Edmond Locard – Numerical standards and ‘probable’ identifications. Journal of Forensic Identification, 45, 136–163.Google Scholar
  60. Champod, C., Lennard, C., Margot, P., & Stilovic, M. (2004). Fingerprints and other ridge skin impressions. Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
  61. Chen, X., Wang, M., & Zhang, H. (2011). The use of classification trees for bioinformatics. Wiley Interdisciplinary Reviews (WIREs): Data Mining and Knowledge Discovery, 1(1), 55–63. doi://10.1002/widm.14CrossRefGoogle Scholar
  62. Chen, Z. (2000b). Java card technology for smart cards: Architecture and programmer’s guide. Boston: Addison-Wesley.Google Scholar
  63. Cherry, M., & Imwinkelried, E. J. (2006). A cautionary note about fingerprint analysis and reliance on digital technology. Judicature, 89, 334–338.Google Scholar
  64. Chiswick, D., & Cope, R. (Eds.). (1995). Seminars in practical forensic psychiatry. (Royal College of Psychiatrists, College Seminars Series.) London: Gaskell.Google Scholar
  65. Clark, M., & Crawford, C. (Eds.). (1994). Legal medicine in history. Cambridge History of Medicine. Cambridge: Cambridge University Press.Google Scholar
  66. Clarke, P. H. (1985). The surveyor in court. London: Estates Gazette.Google Scholar
  67. Clements, R. V. (1994). Safe practice in obstetrics and gynaecology: A medico-legal handbook. Edinburgh: Churchill Livingstone.Google Scholar
  68. Clifford, B., & Bull, R. (1978). The psychology of person identification. London: Routledge.Google Scholar
  69. Cohn, A. G., Gotts, N. M., Cui, Z., Randell, D. A., Bennett, B., & Gooday, J. M. (1994). Exploiting temporal continuity in qualitative spatial calculi. In R. G. Golledge & M. J. Egenhofer (Eds.), Spatial and temporal reasoning in geographical information systems. Amsterdam: Elsevier.Google Scholar
  70. Cole, D. J., & Ackland, P. R. (1994). The detective and the doctor: A murder casebook. London: Hale.Google Scholar
  71. Cole, S. A. (1999). What counts for identity? The historical origins of the methodology of latent fingerprint identification. Science in Context,55 12, 139–172.CrossRefGoogle Scholar
  72. Cole, S. A. (2001). Suspect identities: A history of fingerprinting and criminal identification. Cambridge, MA: Harvard University Press.Google Scholar
  73. Cole, S. A. (2004). Grandfathering evidence: Fingerprint admissibility rulings from Jennings to Llera Plaza and back again. American Criminal Law Review, 41, 1189–1276.Google Scholar
  74. Cole, S. A. (2005). More than zero: Accounting for error in latent print identification. Journal of Criminal Law and Criminology, 95, 985–1078.Google Scholar
  75. Cole, S. A. (2006a). The prevalence and potential causes of wrongful conviction by fingerprint evidence. Golden Gate University Law Review, 37, 39–105.Google Scholar
  76. Cole, S. A. (2006b). Is Fingerprint identification valid? Rhetorics of reliability in fingerprint proponents’ discourse. Law Policy, 28, 109–135.CrossRefGoogle Scholar
  77. Cole, S. A. (2009). Daubert revisited. Don’t shoot the messenger by one of the messengers: A response to Merlino et al. Tulsa Law Review, 45, 111–132. http://www.tulsalawreview.com/wp content/uploads/2010/10/Cole.Final_.pdfGoogle Scholar
  78. Cole, S. A., Welling, M., Dioso-Villa, R., & Carpenter, R. (2008). Beyond the individuality of fingerprints: A measure of simulated computer latent print source attribution accuracy. Law, Probability and Risk, 7, 165–189.CrossRefGoogle Scholar
  79. Cone, E. J., & Deyl, Z. (Eds.). (1992). Toxicology and forensic applications. Special issue, Journal of Chromatography, B: Biomedical Applications, 580(1/2). Amsterdam: Elsevier.Google Scholar
  80. Console, L., & Torasso, P. (1991). A spectrum of logical definitions of model-based diagnosis. Computational Intelligence, 7(3), 133–141.CrossRefGoogle Scholar
  81. Cook, R., Evett, I., Jackson, G., Jones, P., & Lambert, J. (1998). A model for case assessment and interpretation. Science and Justice, 38, 151–156.CrossRefGoogle Scholar
  82. Cook, T., & Tattersall, A. (2008). Blackstone’s senior investigating officer’s handbook. Oxford: Oxford University Press.Google Scholar
  83. Cox, M., & Mays, S. (Eds.). (2000). Human osteology in archaeology and forensic science. London: Greenwich Medical Media.Google Scholar
  84. Cummins, H., & Midlo, C. (1943). Finger prints, palms and soles: An introduction to dermatoglyphics. Philadelphia, PA: Blakiston.Google Scholar
  85. Cutler, B. L., & Penrod, S. D. (1995). Assessing the accuracy of eye-witness identifications. Chapter 3.3 In R. Bull & D. Carson (Eds.), Handbook of psychology in legal contexts (pp. 193–213). Chichester: Wiley.Google Scholar
  86. Davenport, G. C., France, D. L., Griffin, T. J., Swanburg, J. G., Lindemann, J. W., Tranunell, V., et al. (1992). A multidisciplinary approach to the detection of clandestine graves. Journal of Forensic Science, 37(6), 1445–1458. (Also, posted at http://www.terraplus.ca/case histories/dave1.htm)Google Scholar
  87. David, R., & Alla, H. (1992). Petri nets and grafcet: Tools for modelling discrete event systems. New York: Prentice Hall. Translation of: Du Grafcet aux reseaux de Petri.Google Scholar
  88. Davide, F. A. M., Di Natale, C., & D’Amico, A. (1995). Self-organizing sensory maps in odour classification mimicking. Biosensors and Bioelectronics, 10, 203–218.CrossRefGoogle Scholar
  89. Davies, G. M., & Christie, D. (1982). Face recall: An examination of some factors limiting composite production accuracy. Journal of Applied Psychology, 67(1), 103–109.CrossRefGoogle Scholar
  90. Davies, G. M., Ellis, H. D., & Shepherd, J. W. (1978). Face identification: The influence of delay upon accuracy of Photofit construction. Journal of Police Science and Administration, 6(1), 35–42.Google Scholar
  91. Allen, R. J. (2008a). Explanationism all the way down. Episteme, 3(5), 320–328.CrossRefGoogle Scholar
  92. Davies, G. M, Ellis, H. D., & Shepherd, J. W. (1981). Perceiving and remembering faces. New York: Academic.Google Scholar
  93. Dawid, A. P. (1994). The island problem: Coherent use of identification evidence. Chapter 11 In P. R. Freeman & A. F. M. Smith (Eds.), Aspects of uncertainty: A tribute to D. V. Lindley (pp. 159–170). Chichester: Wiley.Google Scholar
  94. Dawid, A. P. (2001a). Comment on Stockmarr’s ‘Likelihood ratios for evaluating DNA evidence when the suspect is found through a database search’ (with response by A. Stockmarr). Biometrics, 57, 976–980.Google Scholar
  95. Dawid, A. P. (2004a). Which likelihood ratio? (Comment on ‘Why the effect of prior odds should accompany the likelihood ratio when reporting DNA evidence’, by R. Meester & M. Sjerps). Law, Probability and Risk, 3, 65–71.CrossRefGoogle Scholar
  96. Dawid, A. P. (2005b). Probability and proof. On-line Appendix to Analysis of evidence (2nd ed., pp. 119–148), by T. J. Anderson, D. A. Schum, & W. L. Twining. Cambridge: Cambridge University Press. Posted at http://tinyurl.com/7g3bd, 94 pp.Google Scholar
  97. Dawid, A. P. (2008). Statistics and the law. In A. Bell, J. Swenson-Wright, & K. Tybjerg (Eds.), Evidence. Cambridge.: Cambridge University Press, pp. 119–148. Also: Research Report 244, May 2004, Department of Statistical Science, University College London, May 2004.Google Scholar
  98. Dawid, A. P., & Evett, I. W. (1997). Using a graphical method to assist the evaluation of complicated patterns of evidence. Journal of Forensic Science, 42, 226–231.Google Scholar
  99. Dawid, A. P., & Mortera, J. (1996). Coherent analysis of forensic identification evidence. Journal of the Royal Statistics Society, B, 58, 425–443.Google Scholar
  100. Dawid, A. P., & Mortera, J. (1998). Forensic identification with imperfect evidence. Biometrika, 85, 835–849. Correction: Biometrika, 86 (1999), p. 974.CrossRefGoogle Scholar
  101. Dawid, A. P., Mortera, J., Dobosz, M., & Pascali, V. L. (2003). Mutations and the probabilistic approach to incompatible paternity tests. In B. Brinkmann & A. Carracedo (Eds.), Progress in forensic genetics 9: Proceedings from the 19th congress of the international society for forensic haemogenetics (pp. 637–638). (International Congress Series, Vol. 1239.) Amsterdam: Elsevier Science.Google Scholar
  102. Dawid, A. P., Mortera, J., & Pascali, V. L. (2001). Non-fatherhood or mutation? A probabilistic approach to parental exclusion in paternity testing. Forensic Science International, 124, 55–61.CrossRefGoogle Scholar
  103. Dawid, A. P., Mortera, J., & Vicard, P. (2010). Paternity testing allowing for uncertain mutation rates. In A. O’Hagan & M. West (Eds.), The Oxford handbook of applied bayesian analysis (pp. 188–215). Oxford: Oxford University Press.Google Scholar
  104. Dawid, A. P., & Pueschel, J. (1999). Hierarchical models for DNA profiling using heterogeneous databases (with Discussion). In J. M. Bernardo, J. O. Berger, A. P. Dawid, & A. F. M. Smith (Eds.), Bayesian statistics 6 (pp. 187–212). Oxford: Oxford University Press.Google Scholar
  105. Dawid, A. P., van Boxel, D. W., Mortera, J., & Pascali, V. L. (1999). Inference about disputed paternity from an incomplete pedigree using a probabilistic expert system. Bulletin of the International Statistics Institute, 58, 241–242. Contributed Papers Book 1.Google Scholar
  106. Dawson, L., Macdonald, L., Ball, J., & “other members of the SoilFit team”. (2006). Integration of soil fingerprinting techniques for forensic application (abstract). In A. Ruffell (Ed.), Abstract book of geoscientists at crime scenes: First, inaugural meeting of the Geological Society of London, 20 December 2006 (p. 23). London: Forensic Geoscience Group. http://www.geolsoc.org.uk/pdfs/FGtalks&abs_pro.pdf.Google Scholar
  107. Deedrick, D. W. (2001). Fabric processing and “nubs”. Chapter 1 In M. M. Houck (Ed.), Mute witnesses: Trace evidence analysis. London: Academic.Google Scholar
  108. de Kleer, J. (1986). An assumption-based TMS. Artificial Intelligence, 28, 127–162.CrossRefGoogle Scholar
  109. Dixon, D. (1999). Police investigative procedures. In C. Walker & K. Starmer (Eds.), Miscarriage of justice: A review of justice in error (2nd ed.). London: Blackstone Press.Google Scholar
  110. Donnelly, L. J. (2002a, May). Finding the silent witness. Geoscientist, 12(5), 16–17. The Geological Society of London.Google Scholar
  111. Donnelly, L. J. (2003, December). The applications of forensic geology to help the police solve crimes. European Geologist: Journal of the European Federation of Geologists, 16, 8–12.Google Scholar
  112. Donnelly, L. J. (2004, March–April). Forensic geology: The discovery of spades on Saddleworth Moor. Geology Today, 20(2), 42. Oxford: Blackwell.CrossRefGoogle Scholar
  113. Donnelly, L. J. (2006). Introduction & welcome. In A. Ruffell (Ed.), Abstract book of geoscientists at crime scenes: First, inaugural meeting of the Geological Society of London, 20 December 2006 (pp. 3–5). London: Forensic Geoscience Group. http://www.geolsoc.org.uk/pdfs/FGtalks&abs_pro.pdf Google Scholar
  114. Dror, I., & Hamard, S. (2009). Cognition distributed: How cognitive technology extends our minds. Amsterdam: Benjamins.Google Scholar
  115. Dror, I. E., & Charlton, D. (2006). Why experts make errors. Journal of Forensic Identification, 56, 600–616. http://www.bioforensics.com/sequential_unmasking/Dror_Errors_JFI.pdf Google Scholar
  116. Dror, I. E., Charlton, D., & Péron, A. (2006). Contextual information renders experts vulnerable to making erroneous identifications. Forensic Science International, 156, 74–78. http://www.bioforensics.com/sequential_unmasking/Dror_Contextual_FSI_2006.pdf CrossRefGoogle Scholar
  117. Dror, I. E., Péron, A., Hind, S.-L., & Charlton, D. (2005). When emotions get the better of us: The effect of contextual top-down processing on matching fingerprints. Applied Cognitive Psychology, 19(6), 799–809. http://www.bioforensics.com/sequential_unmasking/Dror_emotions.pdf CrossRefGoogle Scholar
  118. Dror, I. E., & Rosenthal, R. (2008). Meta-analytically quantifying the reliability and biasability of forensic experts. Journal of Forensic Sciences, 53(4), 900–903. http://www.bioforensics.com/sequential_unmasking/dror_meta analysis_JFS_2008.pdfCrossRefGoogle Scholar
  119. Duncan, G. T., Tacey, M. L., & Stauffer, E. (2005). Techniques of DNA analysis. In S. H. James & J. J. Nordby (Eds.), Forensic science: An introduction to scientific and investigative techniques (2nd ed.). Boca Raton, FL: CRC Press. Also in 3rd edition, 2009.Google Scholar
  120. Easteal, S., McLeod, N., & Reed, K. (1991). DNA profiling: Principles, pitfalls and potential. Chur, Switzerland: Harwood.Google Scholar
  121. Ebert, J. I. (2002). Photogrammetry, photointerpretation, and digital imaging and mapping in environmental forensics. Chapter 3 In B. L. Murphy & R. D. Morrison (Eds.), Introduction to environmental forensics (pp. 43–69). San Diego, CA & London, U.K.: Academic.Google Scholar
  122. Eckert, W. G., & James, S. H. (1993). Interpretation of bloodstain evidence at crime scenes. Boca Raton, FL: CRC Press. [Later, Eckert & James (1999).]Google Scholar
  123. Egashira, M., & Shimizu, Y. (1993). Odor sensing by semiconductor metal oxides. Sensors & Actuators, 14, 443–446.CrossRefGoogle Scholar
  124. Egeland, T., Mostad, P., & Olaisen, B. (1997). A computerised method for calculating the probability of pedigrees from genetic data. Science & Justice, 37(4), 269–274. http://www.nr.no/~mostad/pater CrossRefGoogle Scholar
  125. Eigen, J. P. (1995). Witnessing insanity: Madness and mad-doctors in the English court. New Haven, CT: Yale University Press.Google Scholar
  126. Ellis, H. D., Davies, G. M., & Shepherd, J. W. (1986). Introduction: Processes underlying face recognition. In R. Bruyer (Ed.), The neuropsychology of face perception and facial expression (pp. 1–38). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  127. Ellis, H. D., Shepherd, J. W., & Davies G. M. (1975). An investigation of the use of the Photofit technique for recalling faces. British Journal of Psychology, 66(1), 29–37.CrossRefGoogle Scholar
  128. Epstein, R. (2002). Fingerprints meet Daubert: The myth of fingerprint “science” is revealed. Southern California Law Review, 75, 605–657.Google Scholar
  129. Esparza, J., & Bruns, G. (1994). Trapping mutual exclusion in the box calculus. (LFCS Report Series, ECS LFCS 94 295.) Edinburgh, Scotland: LFCS, Department of Computer Science, University of Edinburgh.Google Scholar
  130. Evett, I. W., & Williams, R. L. (1996). A review of the sixteen points fingerprint standard in England and Wales. Journal of Forensic Identification, 46, 49–73.Google Scholar
  131. Faegri, K., & Iversen, J. (1989). Textbook of pollen analysis. Fourth Edition by K. Faegri, P. E. Kaland, & K. Krzywinski. New York: Wiley. First edition, Copenhagen: Munksgaars, 1950.Google Scholar
  132. Falkenhainer, B., & Forbus, K. (1991). Compositional modeling: finding the right model for the job. Artificial Intelligence, 51, 95–143.CrossRefGoogle Scholar
  133. Farina, A., Kovács-Vajna, Z. M., & Leone, A. (1999). Fingerprint minutiae extraction from skeletonized binary images. Pattern Recognition, 32(5), 877–889.CrossRefGoogle Scholar
  134. Faulk, M. (1994). Basic forensic psychiatry (2nd ed.). Oxford: Blackwell Scientific.Google Scholar
  135. Fernandez, C., & Best, E. (1988). Nonsequential processes: A petri net view (EATCS Monographs on Theoretical Computer Science, 13). Berlin: Springer.Google Scholar
  136. Festinger, L. (1957). A theory of cognitive dissonance. Evanston, IL: Row Peterson. Reissues of the same edition, Stanford, California: Stanford University Press, 1962, 1970; London: Tavistock Publications, 1962. Revised and enlarged German translation: Theorie der kognitiven Dissonanz (1978).Google Scholar
  137. Field, D., & Raitt, F. (1996). Evidence. Edinburgh, Scotland: W.Green.Google Scholar
  138. Finkelstein, M. (1978). Quantitative methods in law. New York: The Free Press.Google Scholar
  139. Finkelstein, M. (1980). The judicial reception of multiple regression studies in race and sex discrimination cases. Columbia Law Review, 80, 737–754.CrossRefGoogle Scholar
  140. Finkelstein, M. O., & Levin, B. (2003). On the probative value of evidence from a screening search. Jurimetrics Journal, 43, 265–290.Google Scholar
  141. Firestein, S. (2001). How the olfactory system makes sense of scents. Nature, 413, 211–218.CrossRefGoogle Scholar
  142. Fisher, M., Gabbay, D., & Vila, L. (Eds.). (2005). Handbook of temporal reasoning in artificial intelligence (electronic resource; Foundations of Artificial Intelligence, 1). Amsterdam: Elsevier.Google Scholar
  143. Foster, D. (2001). Author unknown: On the trail of anonymous. London: Macmillan; with respect to New York: Holt, 2000, the U.K. edition is corrected, and includes as well the new Ch. 7, on current British journalism.Google Scholar
  144. Frank, P. B., Wagner, M. J., & Weil, R. L. (1994). Litigation services handbook: The role of the accountant as expert witness. 1994 cumulative supplement. New York: Wiley.Google Scholar
  145. Franke, K., & Srihari, S. N. (2008). Computational forensics: An overview. In Computational forensics: Proceedings of the international workshop, Washington, DC (pp. 1–10). (Lecture Notes in Computer Science, 5158). Berlin: Springer.CrossRefGoogle Scholar
  146. Freund, M. S., & Lewis, N. S. (1995). A chemically diverse conducting polymer-based electronic nose. Proceedings of the National Academy of Sciences USA, 92, 2652–2656.CrossRefGoogle Scholar
  147. Frowd, C. D., Bruce, V., & Hancock, P. J. B. (2008). Changing the face of criminal identification. The Psychologist, 21, 670–672.Google Scholar
  148. Frowd, C. D., Carson, D., Ness., H., Richardson, Morrison, L., McLanaghan, S., et al. (2005). A forensically valid comparison of facial composite systems. Psychology, Crime & Law, 11, 33–52.Google Scholar
  149. Frowd, C. D., Hancock, P. J. B., & Carson, D. (2004). EvoFIT: A holistic, evolutionary facial imaging technique for creating composites. ACM Transactions on Applied Psychology (TAP), 1, 1–21.Google Scholar
  150. Frowd, C. D., McQuiston-Surret, D., Anandaciva, S., Ireland, C. G. & Hancock, P. J. B. (2007). An evaluation of US systems for facial composite production. Ergonomics, 50, 187–198.Google Scholar
  151. Fu, X., Boongoen, T., & Shen, Q. (2010). Evidence directed generation of plausible crime scenarios with identity resolution. Applied Artificial Intelligence, 24(4), 253–276.CrossRefGoogle Scholar
  152. Full, W. E., Ehrlich, R., & Bezdek, J. C. (1982). Fuzzy QModel: A new approach for linear unmixing. Journal of Mathematical Geology, 14, 259–270.CrossRefGoogle Scholar
  153. Full, W. E., Ehrlich, R., & Klovan, J. E. (1981). Extended Qmodel [sic]: Objective definition of external end members in the analysis of mixtures. Journal of Mathematical Geology, 13, 331–344.CrossRefGoogle Scholar
  154. Gaffney, C., & Gater, J. (2003). Revealing the buried past: Geophysics for archaeologists. Gloucester: Tempus Publishing.Google Scholar
  155. Gardner, J. W. (1991). Detection of vapours and odours from a multisensor array using pattern recognition: Principal component and cluster analysis. Sensors & Actuators, 4, 109–115.CrossRefGoogle Scholar
  156. Gardner, R. M., & Bevel, T. (2009). Practical crime scene analysis and reconstruction. With contributions by M. Noedel, S. A. Wagner, & I. Dalley. (CRC Series in Practical Aspects of Criminal and Forensic Investigations.) Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
  157. Garrett, R. E. (1987). The overlooked business aspects of forensic engineering. Forensic Engineering, 1(1), 17–19.Google Scholar
  158. Gastwirth, J. L., & Miao, W. (2009). Formal statistical analysis of the data in disparate impact cases provides sounder inferences than the U.S. government’s ‘four-fifths’ rule: An examination of the statistical evidence in Ricci v. DeStefano. Law, Probability and Risk, 8, 171–191. doi:10.1093/lpr/mgp017CrossRefGoogle Scholar
  159. Geddes, L. (2010, August 21). What are the chances? ([pre-headline:] Special report: DNA evidence; [subheadline:] In the second part of our investigation, Linda Geddes shows that the odds attached to a piece of DNA evidence can vary enormously). New Scientist, 207(2274), 8–10. With an inset: ‘When lawyers question DNA’, on p. 9.Google Scholar
  160. Gemperline, P. J. (1984). A priori estimates of the elution [sic] profiles of pure components in overlapped liquid chromatography peaks using target transformation factor analysis. Journal of Chemical Information and Computer Sciences, 24, 206–212.CrossRefGoogle Scholar
  161. Genrich, H., & Lautenbach, K. (1979). Predicate/transitions nets. In W. Brauer (Ed.), Net theory and application (Lecture Notes in Computer Science, 84). Berlin: Springer.Google Scholar
  162. Geradts, Z. (2005). Use of computers in forensic science. Chapter 26 In S. H. James & J. J. Nordby (Eds.), Forensic science: An introduction to scientific and investigative techniques (2nd ed.). Boca Raton, FL: CRC Press. Also in 3rd edition, 2009.Google Scholar
  163. Gerasimov, M. (1971). The face finder. London: Hutchinson.Google Scholar
  164. Gibson, J. J. (1977). The theory of affordances. In R. Shaw & J. Bransford (Eds.), Perceiving, acting and knowing (pp. 67–82). Hillsdale, NJ: Erlbaum.Google Scholar
  165. Gibson, J. J. (1979). The ecological approach to visual perception. Hillsdale, NJ: Erlbaum.Google Scholar
  166. Gibson, S. J., Solomon, C. J., Maylin, M. I. S., & Clark, C. (2009). New methodology in facial composite construction: From theory to practice. International Journal of Electronic Security and Digital Forensics, 2, 156–168.CrossRefGoogle Scholar
  167. Glass, R. T. (2005). Forensic odontology. Chapter 6 In S. H. James & J. J. Nordby (Eds.), Forensic science: An introduction to scientific and investigative techniques (2nd ed.). Boca Raton, FL: CRC Press. Also in 3rd edition, 2009.Google Scholar
  168. Goldstein, A. G., & Chance, J. E. (1981). Laboratory studies of face recognition. In G. Davies, H. Ellis, & J. Shepherd (Eds.), Perceiving and remembering faces (pp. 81–104). New York: Academic.Google Scholar
  169. González Ballester, M. A., Büchler, P., & Reimers, N. (2007). Combined statistical model of bone shape and biomechanical properties for evidence-based orthopaedic implant design. In The Digital Patient, special issue of ERCIM News, 69 (April), 27–28. Accessible at the webpage http://ercim news.ercim.org/ of the European Research Consortium for Informatics and Mathematics.Google Scholar
  170. Goode, G. C., Morris, J. R., & Wells, J. M. (1979). The application of radioactive bromine isotopes for the visualisation of latent fingerprints. Journal of Radioanalytical [and Nuclear] Chemistry, 48(1/2), 17–28.CrossRefGoogle Scholar
  171. Greer, S. (1994). Miscarriages of criminal justice reconsidered. Modern Law Review, 58, 71.Google Scholar
  172. Gunn, J., & Taylor, P. J. (1993). Forensic psychiatry: Clinical, legal and ethical issues. Oxford & Boston: Butterworth-Heinemann.Google Scholar
  173. Gutés, A., Céspedes, F., & del Valle, M. (2007). Electronic tongues in flow analysis. Analytica Chimica Acta, 600, 90–96.CrossRefGoogle Scholar
  174. Gutiérrez, M., García-Rojas, A., Thalmann, D., Vexo, F., Moccozet, L., Magnenat-Thalmann, N., et al. (2007). An ontology of virtual humans: Incorporating semantics into human shapes. The Visual Computer, 23(3), 207–218.CrossRefGoogle Scholar
  175. Haber, L., & Haber, R. N. (2003). Error rates for human fingerprint examiners. In N. K. Ratha & R. Bolle (Eds.), Automatic fingerprint recognition systems (pp. 339–360). New York: Springer.Google Scholar
  176. Haber, L,. & Haber, R. N. (2006). Letter Re: A report of latent print examiner accuracy during comparison training exercises. Journal of Forensic Identification, 56, 493–499.Google Scholar
  177. Haber, L., & Haber, R. N. (2008). Scientific validation of fingerprint evidence under daubert. Law, Probability and Risk, 7, 87–109.CrossRefGoogle Scholar
  178. Haglund, W. D. (2005). Forensic taphonomy. Chapter 8 In S. H. James & J. J. Nordby (Eds.), Forensic science: An introduction to scientific and investigative techniques (2nd ed.). Boca Raton, FL: CRC Press. Also in 3rd edition, 2009.Google Scholar
  179. Hammersley, R., & Read, J. D. (1993). Voice identification by humans and computers. In S. L. Sporer, R. S. Malpass, & G. Köhnken (Eds.), Suspect identification: Psychological knowledge, problems and perspectives. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  180. Hammon, W. S., McMechan, G. A., & Zeng, X. (2000). Forensic GPR-finite-difference simulation of responses from buried remains. Journal of Applied Geophysics, 45, 171–186.CrossRefGoogle Scholar
  181. Hamscher, W., Console, L., & de Kleer, J. (Eds.). (1992). Readings in model-based diagnosis. San Mateo, CA: Morgan-Kaufmann.Google Scholar
  182. Hancock, P. J. B. (2000). Evolving faces from principal components. Behaviour Research Methods, Instruments and Computers, 32(2), 327–333.CrossRefGoogle Scholar
  183. Hancock, P. J. B., Bruce, V., & Burton, A. M. (1998). A comparison of two computer-based face recognition systems with human perceptions of faces. Vision Research, 38, 2277–2288.CrossRefGoogle Scholar
  184. Hancock P. J. B., Bruce, V., & Burton, A. M. (2000). Recognition of unfamiliar faces. Trends in Cognitive Sciences, 4(9), 330–337.CrossRefGoogle Scholar
  185. Hancock, P. J. B., & Frowd, C. D. (2001). Evolutionary generation of faces. In P. J. Bentley & D. W.Corne (Eds.), Creative evolutionary systems. London: Academic.Google Scholar
  186. Hasel, L. E., & Wells, G. L. (2006). Catching the bad guy: Morphing composite faces helps. Law and human Behavior, 31, 193–207.CrossRefGoogle Scholar
  187. Hatfield, J. V., Neaves, P., Hicks, P. J., Persaud, K. C., & Tavers, P. (1994). Toward an integrated electronic nose using conducting polymer sensors. Sensors & Actuators, 18, 221–228.CrossRefGoogle Scholar
  188. Hauser, K., & Ng-Thow-Hing, V. (2010). Randomized multi-modal planning for precision pushing on a humanoid robot. Chapter 9 In K. Harada, E. Yoshida, & K. Yokoi (Eds.), Motion planning for humanoid robots (pp. 251–276). Berlin: Springer.CrossRefGoogle Scholar
  189. Henry, R. C., & Kim, B. M. (1990). Extension of self-modeling curve resolution to mixtures of more than three components. Part 1: Finding the basic feasible region. Chemometrics and intelligent Laboratory Systems, 8, 205–216.CrossRefGoogle Scholar
  190. Herrero, S. (2005). Legal issues in forensic DNA. In S. H. James & J. J. Nordby (Eds.), Forensic science: An introduction to scientific and investigative techniques (2nd ed.). Boca Raton, FL: CRC Press. Also in 3rd edition, 2009.Google Scholar
  191. Hildebrand, J. A., Wiggins, S. M., Henkart, P. C., & Conyers, L. B. (2002). Comparison of seismic reflection and ground penetrating radar imaging at the controlled archaeological test site, Champaign, Illinois. Archaeological Prospection, 9, 9–21.CrossRefGoogle Scholar
  192. Hill, C., Memon, A., & McGeorge, P. (2008). The role of confirmation bias in suspect interviews: A systematic evaluation. Legal & Criminological Psychology, 13, 357–371.CrossRefGoogle Scholar
  193. Hoare, C. A. R. (1985). Communicating sequential processes. (Prentice Hall Series in Computer Science). Hemel Hempstead, Hertfordshire, England: Prentice Hall.Google Scholar
  194. Hohns, H. M. (1987). The place of forensics in engineering. Forensic Engineering, 1(1), 3–5.Google Scholar
  195. Hollien, H. F. (1990). The acoustics of crime: The new science of forensic phonetics. New York: Plenum.Google Scholar
  196. Holt, A. W. (1971). Introduction to occurrence systems. In E. L. Jacks (Ed.), Associative information techniques (pp. 175–203). New York: American Elsevier.Google Scholar
  197. Holt, A. W. (1988). Diplans: A new language for the study and implementation of coordination. ACM Transactions on Information Systems (TOIS), 6(2), 109–125.CrossRefGoogle Scholar
  198. Holt, A. W., & Meldman, J. A. (1971). Petri nets and legal systems. Jurimetrics, 12(2), 65–75.Google Scholar
  199. Hopke, P. K. (1989). Target transformation factor analysis. Chemometrics and Intelligent Laboratory Systems, 6, 7–19.CrossRefGoogle Scholar
  200. Houck, M. M. (1999). Statistics and trace evidence: The tyranny of numbers. Forensic Science Communications, 1(3), 1–8.Google Scholar
  201. Hunter, J. R., Roberts, C., & Martin, A. (with Heron, C., Knupfer, G. and Pollard, M.). (1997). Studies in crime: An introduction to forensic archaeology. London: Batsford, 1995, 1996; London: Routledge, 1997.Google Scholar
  202. Hutchinson, J. R., Ng-Thow-Hing, V., & Anderson, F. C. (2007). A 3D interactive method for estimating body segmental parameters in animals: Application to the turning and running performance of Tyrannosaurus rex. Journal of Theoretical Biology, 246(4), 660–680.CrossRefGoogle Scholar
  203. Hyde, H. A., & Williams, D. W. (1944). The right word. Pollen Analisis Circulars, 8, 6.Google Scholar
  204. Ineichen, M., & Neukom, R. (1995). Daktyloskopieren von mummifizierten Leichen [in German; Dactyloscopy of mummified bodies; with German and English summaries]. Archiv für Kriminologie, 196(3/4), 87–92. Our quotation is from the English summary, as reproduced in Forensic Science Abstracts, Section 49, 22(2) (1996): p. 57, sec. 4, §395.Google Scholar
  205. Inman, K., & Rudin, V. (2002). An introduction to forensic DNA analysis. Boca Raton, FL: CRC Press.Google Scholar
  206. Isenor, D. K., & Zaky, S. G. (1986). Fingerprint identification using graph matching. Pattern Recognition, 19, 111–112.CrossRefGoogle Scholar
  207. Jain, A. K., Hong, L., Pankanti, S., & Bolle, R. (1997). An identity-authentication system using fingerprint. Proceedings of the IEEE, 85(9), 1365–1388.CrossRefGoogle Scholar
  208. Jain, A. K., & Maltoni, D. (2003). Handbook of fingerprint recognition. Berlin: Springer.Google Scholar
  209. Jain, A. K., Prabhakar, S., Hong, L., & Pankanti, S. (2000). Filterbank-based fingerprint matching. IEEE Transactions on Image Processing, 9(5), 846–859.CrossRefGoogle Scholar
  210. James, S. H. (Ed.). (1999). Scientific and legal applications of bloodstain pattern interpretation. Boca Raton, FL: CRC Press.Google Scholar
  211. James, S. H., & Eckert, W. G. (1999). Interpretation of bloodstain evidence at crime scenes (2nd ed.). Boca Raton, FL: CRC Press.Google Scholar
  212. James, S. H., & Nordby, J. J. (Eds.). (2003) Forensic science: An introduction to scientific and investigative techniques (1st ed.). Boca Raton, FL: CRC Press. 2nd edition, 2005. Also published in the 3rd edition, 2009.Google Scholar
  213. James, S. H., Kish, P. E., & Sutton, T. P. (2005a). Principles of bloodstain pattern analysis (3rd ed.). Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
  214. James, S. H., Kish, P. E., & Sutton, T. P. (2005b). Recognition of bloodstain patterns. In S. H. James & J. J. Nordby (Eds.), Forensic science: An introduction to scientific and investigative techniques (1st ed.) [with that title opf the book]. Boca Raton, FL: CRC Press. Also in 3rd edition, 2009.Google Scholar
  215. Jamieson, A. (2004). A rational approach to the principles and practice of crime scene investigation: I, principles. Science & Justice, 44(1), 3–7.CrossRefGoogle Scholar
  216. Jha, S. K., & Yadava, R. D. S. (2010). Development of surface acoustic wave electronic nose using pattern recognition system. Defence Science Journal, 60(4), 364–376.Google Scholar
  217. Jiang, X., Yau, W., & Ser, W. (2001). Detecting the fingerprint minutiae by adaptively tracing the gray-level ridge. Pattern Recognition, 34, 999–1013.CrossRefGoogle Scholar
  218. Johnson, S. L. (1985). Two actions equals no response: Misinterpretations of motorcycle collision causes. In I. D. Brown, R. Goldsmith, K. Coombes, & M. A. Sinclair (Eds.), Ergonomics international 85: Proceedings of the ninth congress of the international ergonomics association, Bournemouth, England, September. Basingstoke, Hamsphire: Taylor & Francis.Google Scholar
  219. Johnson, G. W., Ehrlich, R., & Full, W. (2002). Principal components analysis and receptor models in environmental forensics. Chapter 12 In B. L. Murphy & R. D. Morrison (Eds.), Introduction to environmental forensics (pp. 461–515). San Diego, CA & London, U.K.: Academic.Google Scholar
  220. Johnson, M. K., & Farid, H. (2006b). Metric measurements on a plane from a single image. Technical Report TR2006 579. Hanover, New Hampshire: Department of Computer Science, Dartmouth College.Google Scholar
  221. Johnson, M. K., & Farid, H. (2007a). Exposing digital forgeries in complex lighting environments. IEEE Transactions on Information Forensics and Security, 2(3), 450–461.CrossRefGoogle Scholar
  222. Johnston, V. S., & Caldwell, C. (1997). Tracking a criminal suspect through face space with a genetic algorithm. In T. Bäck, D. B. Fogel, & Z. Michalewics (Eds.), Handbook of evolutionary computation. Bristol, England: Institute of Physics Publishing, & New York & Oxford: Oxford University Press.Google Scholar
  223. Jones, C. A. G. (1994). Expert witnesses: Science, medicine, and the practice of law. Oxford Socio-Legal Studies. Oxford: Clarendon Press.Google Scholar
  224. Joyce, C. (1984). The detective from the laboratory. New Scientist, 15 November 1984, pp. 12–16.Google Scholar
  225. Junger, E. P. (1996). Assessing the unique characteristics of close-proximity soil samples: Just how useful is soil evidence? Journal of Forensic Science, 41(1), 27–34.Google Scholar
  226. Karttunen, L. (1976). Discourse referents. Syntax and Semantics, 7, 363–385.Google Scholar
  227. Kassin, S. M., Goldstein, C. J., & Savitsky, K. (2003). Behavioral confirmation in the interrogation room: On the dangers of presuming guilt. Law and Human Behavior, 27, 187–203.CrossRefGoogle Scholar
  228. Kaye, D. (1982). Statistical evidence of discrimination. Journal of the American Statistical Association, 77(380), 773–783.CrossRefGoogle Scholar
  229. Kaye, D. H. (2003). Questioning a courtroom proof of the uniqueness of fingerprints. International Statistical Review, 71, 521–533.CrossRefGoogle Scholar
  230. Kearey, P., & Brooks, M. (1984). An introduction to geophysical exploration (1st ed.). Oxford: Blackwell Science (as cited); 2nd edn.: 1991. 3rd edn.: Kearey, P., Brooks, M., & Hill, I., ibid., 2002.Google Scholar
  231. Keh, B. (1984). Scope and applications of forensic entomology. Annual Review of Entomology, 30, 137–154. Palo Alto, CA: Annual Reviews.CrossRefGoogle Scholar
  232. Keppens, J., & Schafer, B. (2004). “Murdered by persons unknown” – Speculative reasoning in law and logic. In T. Gordon (Ed.), Legal knowledge and information systems. Jurix 2004: The seventeenth annual conference (pp. 109–118). Amsterdam: IOS Press.Google Scholar
  233. Keppens, J., & Schafer, B. (2006). Knowledge based crime scenario modelling. Expert Systems with Applications, 30(2), 203–222.CrossRefGoogle Scholar
  234. Keppens, J., & Shen, Q. (2001). On compositional modelling. Knowledge Engineering Review, 16(2), 157–200.CrossRefGoogle Scholar
  235. Keppens, J., & Shen, Q. (2004). Compositional model repositories via dynamic constraint satisfaction with order-of-magnitude preferences. Journal of Artificial Intelligence Research, 21, 499–550.Google Scholar
  236. Khuwaja, G. A. (2006). A multimodal biometric identification system using compressed finger images. Cybernetics and Systems, 37(1), 23–46.CrossRefGoogle Scholar
  237. Kim, B. M., & Henry, R. C. (1999). Extension of self-modeling curve resolution to mixtures of more than 3 components. Part 2: Finding the complete solution. Chemometrics and Intelligent Laboratory Systems, 49, 67–77.CrossRefGoogle Scholar
  238. Knott, A. W. (1987). Are you an expert? Forensic Engineering, 1(1), 7–16.Google Scholar
  239. Koehler, J. J. (2008). A welcome exchange on the scientific status of fingerprinting (Editorial). Law, Probability and Risk, 7, 85–86.CrossRefGoogle Scholar
  240. Kong, A., Zhang, D., & Kamel, M. (2006). Palmprint identification using feature-level fusion. Pattern Recognition, 29(3), 478–487.CrossRefGoogle Scholar
  241. Kothari, R., & Dong, M. (2002). Decision trees for classification: A review and some new results. In S. K. Pal & A. Pla (Eds.), Pattern Recognition from classical to modern approaches (pp. 169–186). Singapore: World Scientific.Google Scholar
  242. Kovács-Vajna, Z. M. (2000). A fingerprint verification system based on triangular matching and dynamic time warping. IEEE Transactions on Pattern Analysis and Machine Intelligence (IEEE PAMI), 22(11), 1266–1276.CrossRefGoogle Scholar
  243. Kovács-Vajna, Z. M., Rovatti, R., & Frazzoni, M. (2000). Fingerprint ridge distance computation methodologies. Pattern Recognition, 33(1), 69–80.CrossRefGoogle Scholar
  244. Krane, D., Ford, S., Gilder, J., Inman, K., Jamieson, A., Koppl, R., et al. (2008). Sequential unmasking: A means of minimizing observer effects in forensic DNA interpretation. Journal of Forensic Sciences, 53(4),1006–1007. http://www.bioforensics.com/sequential_unmasking/http://www.bioforensics.com/sequential_unmasking/Sequential_Unmasking_2008.pdf CrossRefGoogle Scholar
  245. Krawczak, M., & Schmidtke, J. (1994). DNA fingerprinting. Medical Perspectives Series. Oxford: BIOS Scientific.Google Scholar
  246. Krogman, W. M., & İşcan, M. Y. (1986). The human Skeleton in forensic medicine. Springfield, IL: Charles C. Thomas.Google Scholar
  247. Landman, F. (1986). Towards a theory of information: The status of partial objects in semantics. Dordrecht, The Netherlands: Foris.Google Scholar
  248. Lane, B., Tingey, M., & Tingey, R. (Eds.). (1993). The encyclopedia of forensic science. London: Headline.Google Scholar
  249. Langenburg, G. M. (2004). Pilot study: A statistical snalysis of the ACE V methodology – Analysis stage. Journal of Forensic Identification, 54, 64–79.Google Scholar
  250. Laughery, K. R., & Fowler, R. H. (1980). Sketch artist and Identi-kit procedures for recalling faces. Journal of Applied Psychology, 65(3), 307–316.CrossRefGoogle Scholar
  251. Lauritzen, S. L., & Mortera, J. (2002). Bounding the number of contributors to mixed DNA stains. Forensic Science International, 130, 125–126.CrossRefGoogle Scholar
  252. Lee, H. C., & Gaensslen, R. E. (Eds.). (1991). Advances in fingerprint technology. Elsevier Series in Forensic and Police Science. New York & Amsterdam: Elsevier. 2nd edition published in the CRC Series in Forensic and Police Science, Boca Raton, Florida: CRC Press, 2001.Google Scholar
  253. Lee, H. C., Palmbach, T., & Miller, M. T. (2001). Henry Lee’s crime scene handbook. London: Academic.Google Scholar
  254. Lemar, C., & Chilvers, D. R. (1995). Litigation support (3rd ed.). (The Coopers & Lybrand Guide to the Financial Assessment of Damages and Forensic Accounting.) London: Butterworths.Google Scholar
  255. Lewis, P. R., Gagg, C., & Reynolds, K. (2004). Forensic materials engineering: Case studies. Boca Raton, FL: CRC Press.Google Scholar
  256. Lewis, P. R., & Hainsworth, S. (2006). Fuel line failure from stress corrosion cracking. Engineering Failure Analysis, 13, 946–962.CrossRefGoogle Scholar
  257. Li, Q., Niu, X., Wang, Zh., Jiao, Y., & Sun, Sh. H. (2005). A verifiable fingerprint vault scheme. In R. Khosla, R. J. Howlett, & L. C. Jain (Eds.), Knowledge-based intelligent information and engineering systems: 9th international conference, KES 2005, Melbourne, Australia, September 14–16, 2005, Proceedings, Part III (pp. 1072–1078). (Lecture Notes in Computer Science, Vol. 3684.) Berlin: Springer.Google Scholar
  258. Lloyd, C. (1995). Forensic psychiatry for health professionals. London: Chapman & Hall.Google Scholar
  259. Locard, E. (1930). Analysis of dust traces. American Journal of Police Science, 1(276), 401–496.CrossRefGoogle Scholar
  260. Loftus, E. F. (1974). Reconstructing memory: The incredible witness. Psychology Today, 8, 116–119.Google Scholar
  261. Lonergan, M. C., Severin, E. J., Doleman, B. J., Beaber, S. A., Grubbs, R. H., & Lewis, N. S. (1996). Array-based vapor sensing using chemically sensitive, carbon black-polymer resistors. Chemistry of Materials, 8, 2298–2312.CrossRefGoogle Scholar
  262. Lonsdorf, R. G. (1995). Review of H. Bluestone, S. Travin, & D. Marlowe, Psychiatric-legal decision making by the mental health practitioner: The clinician as de facto magistrate. (New York: Wiley, 1994). The Journal of Legal Medicine, 16(2), 319–324.CrossRefGoogle Scholar
  263. Lucy, D. (2005). Introduction to statistics for forensic scientists. Chichester: Wiley.Google Scholar
  264. Luger, G. F., & Stubblefield, W. A. (1998). Artificial intelligence: Structures and strategies for complex problem solving (3rd ed.). Reading, MA: Addison Wesley Longman.Google Scholar
  265. MacDonell, H. L. (1993). Bloodstain patterns. Corning, NY: Laboratory of Forensic Science.Google Scholar
  266. MacDonell, H. L., & Bialousz, L. F. (1979). Laboratory manual for the geometric interpretation of human bloodstain evidence (2nd ed.). Corning, NY: Laboratory of Forensic Science.Google Scholar
  267. MacDougall, K. A., Fenning, P. J., Cooke, D. A., Preston, H., Brown, A., Hazzard, J., et al. (2002). Non intrusive investigation techniques for groundwater pollution studies. Research & Development Technical Report P2 178/TR/10. Bristol, England: Environment Agency.Google Scholar
  268. Malinowski, E. R. (1991). Factor analysis in chemistry. New York: Wiley.Google Scholar
  269. Maloney, K., Carter, A. L., Jory, S., & Yamashita, B. (2005). Three-dimensional representation of bloodstain pattern analysis. Journal of Forensic Identification, 55(6), 711–725.Google Scholar
  270. Maloney, K., Killeen, J., & Maloney, A. (2009). The use of HemoSpat to include bloodstains located on nonorthogonal surfaces in area-of-origin calculations. Journal of Forensic Identification, 59(5), 513–524. http://hemospat.com/papers/pdf/JFI%20 %20HemoSpat%20Using%20Nonorthogonal%20Surfaces.pdfGoogle Scholar
  271. McCann, D., Culshaw, M. G., & Fenning, P. J. (1997). Setting the standard for geophysical surveys in site investigations. In D. M. McCann, M. Eddleston, P. J. Fenning, & G. M. Reeves (Eds.), Modern geophysics in engineering geology (pp. 3–34). (Engineering Geology Special Publications, 12.) London: Geological Society.Google Scholar
  272. McConville, M., Saunders, A., & Leng, R. (1991). The case for the prosecution. London: Routledge.Google Scholar
  273. McCulloch, M., Jezierski, T., Broffman, M., Hubbard, A., Turner, K., & Janecki, T. (2006). Diagnostic accuracy of canine scent detection in early- and late-stage lung and breast cancers. Integrative Cancer Therapies, 5, 1–10.CrossRefGoogle Scholar
  274. McQuiston-Surret, D., Topp, L. D. & Malpass, R. S. (2006). Use of facial composite systems in US law enforcement agencies, Psychology, Crime & Law, 12, 505–517.CrossRefGoogle Scholar
  275. Meester, R. W. J., & Sjerps, M. (2004). Why the effect of prior odds should accompany the likelihood ratio when reporting DNA evidence (with discussion between A. P. Dawid, D. J. Balding, J. S. Buckleton and C. M. Triggs). Law, Probability and Risk, 3, 51–86.CrossRefGoogle Scholar
  276. Meissner, C., & Kassin, S. (2002). He’s guilty: Investigator bias in judgements of truth and deception. Law and Human Behavior, 26, 469–480.CrossRefGoogle Scholar
  277. Memon, A., Hope, L., & Bull, R. H. C. (2003). Exposure duration: Effects on eyewitness accuracy and confidence. British Journal of Psychology, 94, 339–354.CrossRefGoogle Scholar
  278. Mena, J. (2003). Investigative data mining for security and criminal detection. Amsterdam & Boston (Newton, MA): Butterworth-Heinemann (of Elsevier).Google Scholar
  279. Miller, M. T. (2003). Crime scene investigation. Chapter 8 In S. H. James & J. J. Nordby (Eds.), Forensic science: An introduction to scientific and investigative techniques (1st ed.). Boca Raton, FL: CRC Press. Also as Chapter 10 in 2nd edition, 2005. Also published in the 3rd edition, 2009.Google Scholar
  280. Miller, R. E. (1973). A comparison of some theoretical models of parallel computation. IEEE Transactions on Computers, C 22, 710–717.CrossRefGoogle Scholar
  281. Mitchell, T. M. (1997). Machine learning. New York: McGraw-Hill.Google Scholar
  282. Moenssens, A. (2003). Fingerprint identification: A valid reliable “forensic science”? Criminal Justice, 18, 31–37.Google Scholar
  283. Moore, D. S. (2007). Recent advances in trace explosives detection instrumentation. Sense Imaging, 8, 9–38. doi://10.1007/s11220 007 0029 8CrossRefGoogle Scholar
  284. Morrison, R. D. (2002). Subsurface models used in environmental forensics. Chapter 8 In B. L. Murphy & R. D. Morrison (Eds.), Introduction to environmental forensics (pp. 311–367). San Diego, CA & London: Academic pp. 311–367.Google Scholar
  285. Mortera, J., Dawid, A. P., & Lauritzen, S. L. (2003). Probabilistic expert systems for DNA mixture profiling. Theoretical Population Biology, 63, 191–205.CrossRefGoogle Scholar
  286. Murphy, B. L., & Morrison, R. D. (Eds.). (2002). Introduction to environmental forensics. San Diego, CA & London: Academic.Google Scholar
  287. Murray, R. C., & Tedrow, J. C. F. (1975). Forensic geology: Earth sciences and criminal investigations. New Brunswick, NJ: Rutgers University Press.Google Scholar
  288. Na, H.-J., Yoon, D.-H., Kim, Ch.-S., & Hwang, H. S. (2005). Vulnerability evaluation tools of matching algorithm and integrity verification in fingerprint recognition. In R. Khosla, R. J. Howlett, & L. C. Jain (Eds.), Knowledge-based intelligent information and engineering systems: 9th international conference, KES 2005, Melbourne, Australia, September 14–16, 2005, Proceedings, Part IV (pp. 993–999). (Lecture Notes in Computer Science, Vol. 3684). Berlin: Springer.Google Scholar
  289. Nambiar, P., Bridges, T. E., & Brown, K. A. (1995). Quantitative forensic evaluation of bite marks with the aid of a shape analysis computer program. I: The development of SCIP and the similarity index. Journal of Forensic Odontostomatology, 13(2), 18–25.Google Scholar
  290. Nance, D. A., & Morris, S. B. (2002). An empirical assessment of presentation formats for trace evidence with a relatively large and quantifiable random match probability. Jurimetrics Journal, 42, 403–445.Google Scholar
  291. Nance, D. A., & Morris, S. B. (2005). Juror understanding of DNA evidence: An empirical assessmeng of presentation formats for trace evidence with a relatively small random-match probability. Journal of Legal Studies, 34, 395–443.CrossRefGoogle Scholar
  292. Nanto, H., Sokooshi, H., & Kawai, T. (1993). Aluminum-doped ZnO thin film gas sensor capable of detecting freshness of sea foods. Sensors & Actuators, 14, 715–717.CrossRefGoogle Scholar
  293. Ng-Thow-Hing, V. (1994). A biomechanical musculotendon model for animating articulated objects. MSc Thesis (supervised by E. Fiume). Toronto, Canada: University of Toronto, Department of Computer Science.Google Scholar
  294. Ng-Thow-Hing, V. (2001). Anatomically based models for physical and geometric reconstruction of animals. PhD Thesis (supervised by E. Fiume). Toronto, Canada: University of Toronto, Department of Computer Science.Google Scholar
  295. Nicolle, D. (1990). The Mongol Warlords: Genghis Khan, Kublai Khan, Hülegü, Tamerlane, with plates by R. Hook. Poole, Dorset, England: Firebird Books.Google Scholar
  296. Nielsen, L., & Nespor, S. (1993). Genetic test, screening, and use of genetic data by public authorities: In criminal justice, social security, and alien and foreigners acts. Copenhagen: Danish Centre for Human Rights.Google Scholar
  297. Nissan, E. (1998b). Review of: A. G. B. ter Meulen, Representing time in natural language: The dynamic interpretation of tense and aspect (Cambridge, MA: The MIT Press, 1997). Computers and Artificial Intelligence, 17(1), 98–100.Google Scholar
  298. Nissan, E. (2001b). Can you measure circumstantial evidence? The background of probative formalisms for law. [A review essay on I. Rosoni, Quae singula non prosunt collecta iuvant: la teoria della prova indiziaria nell’età medievale e moderna. Milan, Italy: Giuffrè, 1995.]. Information and Communications Technology Law, 10(2), 231–245.CrossRefGoogle Scholar
  299. Nissan, E. (2001f). Review of: R. Bull and D. Carson (Eds.), Handbook of Psychology in Legal Contexts (Chichester, West Sussex, England: Wiley, 1995). Artificial Intelligence and Law, 9(2/3), pp. 219–224.Google Scholar
  300. Nissan, E. (2001 g). Modelling spatial relations in the traveller’s conditional divorce problem. In M. Koppel & E. Merzbach (Eds.), Higgaion: Studies in rabbinic logic (Vol. 5, pp. 8–21). Jerusalem: Aluma.Google Scholar
  301. Nissan, E. (2003b). Identification and doing without it, II: Visual evidence for pinpointing identity. How Alexander was found out: Purposeful action, enlisting support, assumed identity, and recognition. A goal-driven formal analysis. Cybernetics and Systems, 34(4/5), 359–380.CrossRefGoogle Scholar
  302. Nissan, E. (2003 h). Review of Mani (2001). Cybernetics & Systems, 34(4/5), 559–569.Google Scholar
  303. Nissan, E. (2008b). Tools from artificial intelligence for handling legal evidence. In M. Quigley (Ed.), Encyclopedia of information ethics and security (pp. 42–48). Hershey, PA: IGI Global.Google Scholar
  304. Nissan, E. (2011a). The rod and the crocodile: Temporal relations in textual hermeneutics: An application of Petri nets to semantics. Semiotica, 184(1/4), 187–227.Google Scholar
  305. Noon, R. K. (1992). Introduction to forensic engineering. (The Forensic Library). Boca Raton, FL: CRC Press.Google Scholar
  306. Noon, R. K. (2005a). Structural failures. Chapter 23 In S. H. James & J. J. Nordby (Eds.), Forensic science: An introduction to scientific and investigative techniques (2nd ed.). Boca Raton, FL: CRC Press. Also in 3rd edition, 2009.Google Scholar
  307. Noon, R. K. (2005b). Vehicular accident reconstruction. Chapter 25 In S. H. James & J. J. Nordby (Eds.), Forensic science: An introduction to scientific and investigative techniques (2nd ed.). Boca Raton, FL: CRC Press. Also in 3rd edition, 2009.Google Scholar
  308. Oatley, G., Zeleznikow, J., & Ewart, B. (2004). Matching and predicting crimes. In A. Macintosh, R. Ellis, & T. Allen (Eds.), Applications and innovations in intelligent systems XII. Proceedings of AI2004, the 24th SGAI international conference on knowledge based systems and applications of artificial intelligence (pp. 19–32). Berlin: Springer.Google Scholar
  309. Olderog, E.-R. (1991). Nets, terms and formulas: Three views of concurrent processes and their relationship. (Cambridge Tracts in Theoretical Computer Science, 23.) Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  310. Ormerod, T. C., Barrett, E. C., & Taylor, P. J. (2008). Investigating sensemaking in criminal contexts. In J. M. Schraagen, L. G. Militello, T. C. Ormerod, & R. Lipshitz (Eds.), Naturalistic decision making and macrocognition (pp. 81–102). Farnham, England: Ashgate.Google Scholar
  311. Osborne, C. (1997). Criminal litigation (5th ed.). London: Blackstone.Google Scholar
  312. Osuna, R. G., & Nagle, H. T. (1999). A method for evaluating data preprocessing techniques for odour classification with an array of gas sensors. IEEE Transactions on Systems, Man and Cybernetics, B, 29(5), 626–632.CrossRefGoogle Scholar
  313. Ouellette, J. (1999). Electronic noses sniff our new markets. Industrial Physics, 5, 26–29.Google Scholar
  314. Pankanti, S., Prabhakar, S., & Jain, A. K. (2002). On the individuality of fingerprints. IEEE Transactions on Pattern Analysis & Machine Intelligence (IEEE PAMI), 24, 1010–1025.CrossRefGoogle Scholar
  315. Pardue, H. L. (Ed.). (1994). Analytical aspects of forensic science. Special issue, Analytica Chimica Acta, 288(1/2). Amsterdam: Elsevier.Google Scholar
  316. Peirce, C. S. (1903). Harvard lectures on pragmatism. In C. Hartshorne & P. Weiss (Eds.), Collected papers of Charles Sanders Peirce (Vol. 5). Cambridge, MA: Harvard University Press. (8 vols. published in 1931–1958 (vols. 7 and 8, ed. A. W. Burks).70 Volumes reissued as 8 vols. in 4 by the Belknap Press of Harvard University Press, ca. 1965–1967. The 1931–1958 edn. was reprinted as 8 vols. in Bristol, England: Thoemmes Press, 1998.)Google Scholar
  317. Pelosi, P., & Persaud, K. C. (1988). Gas sensors: towards an artificial nose. In P. Dario (Ed.), Sensors and sensory systems for advanced robotics (pp. 361–381). Berlin: Springer.CrossRefGoogle Scholar
  318. Pennec, X. (2007). From Riemannian geometry to computational anatomy of the brain. In The Digital Patient, special issue of ERCIM News, 69 (April), pp. 15–16. Article downloadable from the webpage http://ercim news.ercim.org/content/view/166/314/ of the European Research Consortium for Informatics and Mathematics.Google Scholar
  319. Penry, J. (1974). Photo-Fit. Forensic Photography, 3(7), 4–10.Google Scholar
  320. Persaud, K. C. (1992). Electronic gas and odor detectors that mimic chemoreception in animals. TRAC Trends in Analytical Chemistry, 11, 61–67.CrossRefGoogle Scholar
  321. Persaud, K. C., Bartlett, J., & Pelosi, P. (1993). Design strategies for gas and odour sensors which mimic the olfactory system. In P. Dario, G. Sandini, & P. Aebisher (Eds.), Robots and biological systems: Towards a new bionics? (pp. 579–602). Berlin: Springer.CrossRefGoogle Scholar
  322. Persaud, K. C., & Dodd, G. (1982). Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature, 299, 352–355.CrossRefGoogle Scholar
  323. Persaud, K. C., Qutob, A. A., Travers, P., Pisanelli, A. M., & Szyszko, S. (1994). Odor evaluation of foods using conducting polymer arrays and neural net pattern recognition. In K. Kurihara, N. Suzuki, & H. Ogawa (Eds.), Olfaction and taste XI (pp. 708–710). Tokyo & Berlin: Springer.Google Scholar
  324. Peters, G. A., & Peters, B. J. (1994). Automotive engineering and litigation. (Wiley Law Publications.) New York: Wiley.Google Scholar
  325. Peterson, J. L. (1981). Petri net theory and the modelling of systems. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
  326. Petri, C. A. (1966). Communication with automata. Supplement 1 to Technical Report RADC TR 65 377, Vol. 1. Rome, NY: Rome Air Development Center, Griffiths Air Force Base, January 1966. Translated by C. F. Greene, Jr., from: Kommunikation mit Automaten, University of Bonn, Bonn, West Germany, 1962.Google Scholar
  327. Pharr, M., & Humphreys, G. (2004). Physically based rendering: From theory to implementation. San Francisco: Morgan Kaufmann.Google Scholar
  328. Philp, R. P. (2002). Application of stable isotopes and radioisotopes in environmental forensics. Chapter 5 In B. L. Murphy & R. D. Morrison (Eds.), Introduction to environmental forensics (pp. 99–136). San Diego, CA & London: Academic.Google Scholar
  329. Pickel, D., Manucy, G., Walker, D., Hall, S., & Walker, J. (2004). Evidence for canine olfactory detection of melanoma. Applied Animal Behaviour Science, 89, 107–116.CrossRefGoogle Scholar
  330. Pisanelli, A. M., Qutob, A. A., Travers, P., Szyszko, S., & Persaud, K. C. (1994). Applications of multi-array polymer sensors to food industries. Life Chemistry Reports, 11, 303–308.Google Scholar
  331. Popescu, A. C., & Farid, H. (2004). Exposing digital forgeries by detecting duplicated image regions. Technical Report TR2004 515. Hanover, NH: Department of Computer Science, Dartmouth College.Google Scholar
  332. Popescu, A. C., & Farid, H. (2005a). Exposing digital forgeries by detecting traces of re sampling. IEEE Transactions on Signal Processing, 53(2), 758–767.CrossRefGoogle Scholar
  333. Popescu, A. C., & Farid, H. (2005b). Exposing digital forgeries in color filter array interpolated images. IEEE Transactions on Signal Processing, 53(10), 3948–3959. http://www.cs.dartmouth.edu/farid/publications/sp05a.html CrossRefGoogle Scholar
  334. Prakken, H., Reed, C., & Walton, D. N. (2003). Argumentation schemes and generalisations in reasoning about evidence. In G. Sartor (Ed.), Proceedings of the ninth International Conference on Artificial Intelligence and Law (ICAIL 2003), Edinburgh, Scotland, 24–28 June 2003 (pp. 32–41). New York: ACM Press.CrossRefGoogle Scholar
  335. Proth, J.-M., & Xie, X. (1996). Petri nets: A tool for design and management of manufacturing systems. Chichester: Wiley.Google Scholar
  336. Pye, K. (2007). Geological and soil evidence: Forensic applications. Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
  337. Pye, K., & Croft, D. J. (Eds.). (2004). Forensic geoscience: Principles, techniques and applications. (Special Publications, 232.) London: Geological Society.Google Scholar
  338. Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, 81–106.Google Scholar
  339. Rakover, S. S., & Cahlon, B. (1989). To catch a thief with a recognition test: The model and some empirical results. Cognitive Psychology, 21, 423–468.CrossRefGoogle Scholar
  340. Rakover, S. S., & Cahlon, B. (2001). Face recognition: Cognitive and computational processes. (Advances in Consciousness Research, Series B, Vol. 31.) Amsterdam: Benjamins.Google Scholar
  341. Redmayne, M. (2002). Appeals to reason. The Modern Law Review, 65(1), 19–35. Oxford: Blackwell.CrossRefGoogle Scholar
  342. Redsicker, D. R. (2005). Basic fire and explosion ivestigation. Chapter 24 In S. H. James & J. J. Nordby (Eds.), Forensic science: An introduction to scientific and investigative techniques (2nd ed.). Boca Raton, FL: CRC Press, 2005. Also in 3rd edition, 2009.Google Scholar
  343. Reutenauer, C. (1990). The mathematics of petri nets. London: Prentice-Hall International.Google Scholar
  344. Ribaux, O., & Margot, P. (1999). Inference structures for crime analysis and intelligence: The example of burglary using forensic science data. Forensic Science International, 100, 193–210.CrossRefGoogle Scholar
  345. Riepert, T., Drechsler, T., Schild, H., Nafe, B., & Mattern, R. (1996). Estimation of sex on the basis of radiographs of the calcaneus. Forensic Science International, 77(3), 133–140.CrossRefGoogle Scholar
  346. Roberts, L. (1991). Fight erupts over DNA fingerprinting. Science, 254, 1721–1723.CrossRefGoogle Scholar
  347. Robertson, B., & Vignaux, G. A. [T.] (1995). Interpreting evidence: Evaluating forensic science in the courtroom. Chichester: Wiley.Google Scholar
  348. Roscoe, A. W. (1998). The theory and practice of concurrency. (Prentice Hall Series in Computer Science.) Hemel Hempstead, Hertfordshire: Prentice Hall.Google Scholar
  349. Roscoe, B. A., & Hopke, P. K. (1981). Comparison of weighted and unweighted target transformation rotations in factor analysis. Computers and Chemistry, 5, 1–7.CrossRefGoogle Scholar
  350. Rosoni, I. (1995). Quae singula non prosunt collecta iuvant: la teoria della prova indiziaria nell’età medievale e moderna. Milan, Italy: Giuffrè. [Reviewed in Nissan (2001b).]Google Scholar
  351. Ross, D. F., Read, J. D., & Toglia, M. P. (Eds.). (1994). Adult eyewitness testimony: Current trends and developments. Cambridge: Cambridge University Press.Google Scholar
  352. Rossiter, B. N., Sillitoe, T. J., & Heather, M. A. (1993). Models for legal documentation: Using formal methods for quality assurance in hypertext systems. (Technical Report Series, 464.) Newcastle upon Tyne, England: University of Newcastle upon Tyne, Computing Science.Google Scholar
  353. Ryan, P. Y. A, Schneider, S. A., Goldsmith, M., Lowe, G., & Roscoe, A. W. (2000). Modelling and analysis of security protocols. Harlow: Pearson Education.Google Scholar
  354. Saferstein, R. E. (1995). Criminalistics: An introduction to forensic science (5th ed.). Englewood Cliffs, NJ: Prentice-Hall. 6th edn., 1998.Google Scholar
  355. Scampicchio, M., Ballabio, D., Arecchi, A., Cosio, S. M., & Mannino, S. (2008). Amperometric electronic tongue for food analysis. Microchimica Acta, 163, 11–21.CrossRefGoogle Scholar
  356. Shirley, S. G., & Persaud, K. C. (1990). The biochemistry of vertebrate olfaction and taste. Seminars Neuroscience., 2, 59–68.Google Scholar
  357. Schneider, S. A. (1999). Concurrent and real time systems: The CSP approach. Chichester: Wiley.Google Scholar
  358. Schneider, S. A. (2001). The B-method: An introduction. Palgrave Cornerstones in Computer Science. London: Palgrave Macmillan.Google Scholar
  359. Schneider, V., Nagano, T., & Geserick, G. (Eds). (1994). Advances in legal medicine. Special issue, Forensic Science International, 69(3). Amsterdam: Elsevier.Google Scholar
  360. Schoenlein, R. W., Chattopadhyay, S., Chong, H. H. W., Glover, T. E., Heimann, P. A., Shank, C. V., et al. (2000). Generation of femtosecond pulses of synchrotron radiation. Science, 287, 2237.CrossRefGoogle Scholar
  361. Schraagen, J. M., & Leijenhorst, H. (2001). Searching for evidence: Knowledge and search strategies used by forensic scientists. In E. Salas & G. Klein (Eds.), Linking expertise and naturalistic decision making (pp. 263–274). Mahwah, NJ: LEA.Google Scholar
  362. Schreiber, F. A. (1991). State and time granularity in systems description: An example. IEEE Real-Time Systems Newsletter, 7(3), 12–17. http://home.dei.polimi.it/schreibe/papers/states2.ps(sic: /schreibe/ not /schreiber/ )Google Scholar
  363. Schreiber, F. A. (1994). Is time a real time? An overview of time ontology in informatics. In W. A. Halang & A. D. Stoyenko (Eds.), Real time computing (pp. 283–307). (NATO ASI, Vol. F 127.) Berlin: Springer.Google Scholar
  364. Schum, D. A. (1994). The evidential foundations of probabilistic reasoning. (Wiley Series in Systems Engineering.) New York: Wiley. Reprinted, Evanston, IL: Northwestern University Press, 2001.Google Scholar
  365. Sellier, K. G., & Kneubuehl, B. P. (1994). Wound ballistics and the scientific background. Amsterdam: Elsevier.Google Scholar
  366. Shoham, Y., & McDermott, D. (1988). Problems in formal temporal reasoning. Artificial Intelligence, 36(1), 49–90.CrossRefGoogle Scholar
  367. Shuirman, G., & Slosson, J. E. (1992). Forensic engineering: Environmental case histories for civil engineers and geologists. San Diego, CA: Academic.Google Scholar
  368. Shurmer, H. V. (1990). An electronic nose: A sensitive and discrimination substitute for a mammalian olfactory system. International Electrical Engineering Proceedings, 137, 197–204.Google Scholar
  369. Siegel, J. A., Knupfer, G. C., & Saukko, P. J. (Ed.). (2000). Encyclopedia of forensic sciences (3 Vols.). London: Academic.Google Scholar
  370. Sigmund, W. (Ed.). (1995). Environmental poisoning and the law: Proceedings of the conference, 17 September 1994, Kings College, London. London: South West Environmental Protection Agency & Environmental Law Foundation, 1995.Google Scholar
  371. Siroky D. S. (2009). Navigating random forests and related advances in algorithmic modeling. Statistics Surveys, 3,147–163. Accessible online by searching the journal’s site at http://www.i journals.org/ss/search.phpCrossRefGoogle Scholar
  372. Smith, P. A., Baber, C., Hunter, J., & Butler, M. (2008). Measuring team skills in crime scene examination: Exploring ad hoc teams. Ergonomics, 51, 1463–1488.CrossRefGoogle Scholar
  373. Söderström, C., Borén, H., Winquist, F., & Krantz-Rülcker, C. (2003). Use of an electronic tongue to analyze mold growth in liquid media. International Journal of Food Microbiology, 83, 253–261.CrossRefGoogle Scholar
  374. Sorg, M. H. (2005). Forensic anthropology. Chapter 7 In S. H. James & J. J. Nordby (Eds.), Forensic science: An introduction to scientific and investigative techniques (2nd ed.). Boca Raton, FL: CRC Press. Also in 3rd edition, 2009.Google Scholar
  375. Specter, M. M. (1987). The national academy of forensic engineers. Forensic Engineering, 1(1), 61–63.CrossRefGoogle Scholar
  376. Srihari, S. N., Srinivasan, H., & Beal, M. (2008). Machine learning for signature verification. In S. Marinai & H. Fujisawa (Eds.), Machine learning in document analysis and recognition (pp. 387–408). (Studies on Computational Intelligence, Vol. 90). Berlin: Springer.CrossRefGoogle Scholar
  377. Stockmarr, A. (1999). Likelihood ratios for evaluating DNA evidence when the suspect is found through a database search. Biometrics, 55, 671–677.CrossRefGoogle Scholar
  378. Stoney, D. A. (1997). Fingerprint identification: Scientific status. In D. L. Faigman, D. H. Kaye, M. J. Saks, & J. Sanders (Eds.), Modern scientific evidence: The law and science of expert testimony (Vol. 2). St. Paul, MN: West Publishing.Google Scholar
  379. Stoney, D. A. (2001). Measurement of fingerprint individuality. In H. C. Lee & R. E. Gaensslen (Eds.), Advances in fingerprint technology (pp. 327–387). Boca Raton, FL: CRC Press.Google Scholar
  380. Suprenant, B. A. (1988). Introduction to forensic engineering. Oxford: Pergamon.Google Scholar
  381. Sutton, P. T. (1998). Bloodstain pattern interpretation. Short Course Manual. Memphis, TN: University of Tennessee.Google Scholar
  382. Tan, X., & Bhanu, B. (2006). Fingerprint matching by genetic algorithms. Pattern Recognition, 29(3), 465–477.CrossRefGoogle Scholar
  383. Taroni, F., Aitken, C., Garbolino, P., & Biedermann, A. (2006). Bayesian networks and probabilistic inference in forensic science. (Statistics in Practice Series.) Chichester: Wiley.CrossRefGoogle Scholar
  384. Tebbett, I. (1992). Gas chromatography in forensic science. (Ellis Horwood Series in Forensic Science.) London: Ellis Horwood.Google Scholar
  385. ter Meulen, A. G. B. (1995). Representing time in natural language: The dynamic interpretation of tense and aspect. Cambridge, MA: The MIT Press. Paperback, 1997. The paperback edition is augmented with an appendix.Google Scholar
  386. Teran, J., Sifakis, E., Blemker, S., Ng-Thow-Hing, V., Lau, C., & Fedkiw, R. (2005). Creating and simulating skeletal muscle from the visible human data set. IEEE Transactions on Visualization and Computer Graphics, 11(3), 317–328.CrossRefGoogle Scholar
  387. Tinsley, Y. (2001). Even better than the real thing? The case for reform of identification procedures. The International Journal of Evidence & Proof, 5(2), 99–110. Sark, Channel Islands: Vathek Publishing (vatheksubs@cassis.co.uk).Google Scholar
  388. Tredoux, C. G., Nunez, D. T., Oxtoby, O., & Prag, B. (2006). An evaluation of ID: An eigenface based construction system. South African Computer Journal, 37, 1–9.Google Scholar
  389. Turner, B. (1987). Forensic entomology: Insects against crime. Science Progress, 71(1)281, pp. 133–144. Abingdon, Oxfordshire: Carfax (Taylor & Francis).Google Scholar
  390. Ukpabi, P., & Peltron, W. (1995). Using the scanning electron microscope to identify the cause of fibre damage. Part I: A review of related literature. Journal of the Canadian Society of Forensic Science, 28(3), 181–187.Google Scholar
  391. van Benthem, J. (1983). The logic of time (1st ed.). Dordrecht, The Netherlands: Kluwer. 2nd edition, 1991.Google Scholar
  392. van Benthem, J. (1995). Temporal logic. In D. M. Gabbay, C. J. Hogger, & J. A. Robinson (Eds.), Handbook of logic in artificial intelligence and logic programming (Vol. 4, pp. 241–350). Oxford: Clarendon Press.Google Scholar
  393. Vicard, P., & Dawid, A. P. (2004). A statistical treatment of biases affecting the estimation of mutation rates. Mutation Research, 547, 19–33.CrossRefGoogle Scholar
  394. Vicard, P., & Dawid, A. P. (2006). Remarks on: ‘Paternity analysis in special fatherless cases without direct testing of alleged father’ [Forensic Science International 146S (2004) S159–S161]. Forensic Science International, 163(1–2), 158–160. http://tinyurl.com/pur8q CrossRefGoogle Scholar
  395. Vicard, P., Dawid, A. P., Mortera, J., & Lauritzen S. L. (2008). Estimating mutation rates from paternity casework. Forensic Science International: Genetics, 2, 9–18. doi:10.1016/j.fsigen.2007.07.002CrossRefGoogle Scholar
  396. Vila, L., & Yoshino, H. (2005). Time in automated legal reasoning. In M. Fisher, D. Gabbay, & L. Vila (Eds.), Handbook of temporal reasoning in artificial intelligence (electronic resource; Foundations of Artificial Intelligence, 1). Amsterdam: Elsevier.Google Scholar
  397. Wang, J. (2004). Microchip devices for detecting terrorist weapons. Analytical Chimica Acta, 507, 3–10.CrossRefGoogle Scholar
  398. Ward, K. M., & Duffield, J. W. (1992). Natural resource damages: Law and economics. (Environmental Law Library, Wiley Law Publications.) New York: Wiley (with pocket supplements).Google Scholar
  399. Watson, J. A. F. (1975). Nothing but the truth: Expert evidence in principle and practice for surveyors, valuers and others (2nd ed.). London: Estates Gazette.Google Scholar
  400. Watson, J. G., & Chow, J. C. (2002). Particulate pattern recognition. Chapter 11 In B. L. Murphy & R. D. Morrison (Eds.), Introduction to environmental forensics (pp. 429–460). San Diego, CA & London: Academic.Google Scholar
  401. Wells, G. L., & Charman, S. D. (2005). Building composites can harm lineup identification performance. Journal of Experimental Psychology: Applied, 11, 147–156.CrossRefGoogle Scholar
  402. Wertheim, K., Langenburg, G., & Moenssens, A. (2006). A report of latent print examiner accuracy during comparison training exercises. Journal of forensic identification, 56, 55–93.Google Scholar
  403. Wertheim, K., & Maceo, A. (2002). The critical stage of friction ridge pattern formation. Journal of Forensic Identification, 52, 35–85.Google Scholar
  404. White, J., Kauer, J. S., Dickinson, T. A., & Walt, D. R. (1996). Rapid analyte recognition in a device based on optical sensors and the olfactory system. Analytical Chemistry, 68, 2191–2202.CrossRefGoogle Scholar
  405. Wilder, H. H., & Wentworth, B. (1918). Personal identification: methods for the identification of individuals, living or dead. Boston: Gorham.Google Scholar
  406. Wilkinson, C. (2004). Forensic facial reconstruction. Cambridge: Cambridge University Press.Google Scholar
  407. Willis, C. M., Church, S. M., Guest, C. M., Cook, W. A., McCarthy, N., Bransbury, A. J., et al. (2004). Olfactory detection of human bladder cancer by dogs: proof of principle study. British Medical Journal, 329, 712–715.CrossRefGoogle Scholar
  408. Wilson, A. D., & Baietto, M. (2009). Applications and advances in electronic-nose technologies. Sensors, 9(7), 5099–5148. Open access. doi://10.3390/s90705099 http://www.mdpi.com/1424-8220/9/7/5099/pdf CrossRefGoogle Scholar
  409. Winquist, F. (2008). Voltammetric electronic tongues: Basic principles and applications. Mikrochimica Acta, 163, 3–10.CrossRefGoogle Scholar
  410. Winquist, F., Holmin, S., Krantz-Rülcker, C., Wide, P., & Lundström, I. (2000). A hybrid electronic tongue. Analytica Chimica Acta, 406, 147–157.CrossRefGoogle Scholar
  411. Wogalter, M. S., & Marwitz, D. B. (1991). Face composite construction: In-view and from-memory quality and improvement with practice. Ergonomics, 34(4), 459–468.CrossRefGoogle Scholar
  412. Wright, R. K. (2005). Investigation of traumatic deaths. In S. H. James & J. J. Nordby (Eds.), Forensic science: An introduction to scientific and investigative techniques (2nd ed.). Boca Raton, FL: CRC Press. Also in 3rd edition, 2009.Google Scholar
  413. Wu, F., Ng-Thow-Hing, V., Singh, K., Agur, A., & McKee, N. H. (2007). Computational representation of the aponeuroses as NURBS surfaces in 3 D musculoskeletal models. Computer Methods and Programs in Biomedicine, 88(2), 112–122.CrossRefGoogle Scholar
  414. Yarmey, A. D. (1995). Eyewitness and evidence obtained by other senses. Chapter 3.7 In R. Bull & D. Carson (Eds.), Handbook of psychology in legal contexts (pp. 216–273). Chichester: Wiley.Google Scholar
  415. Yea, B., Konishi, R., Osaki, T., & Sugahara, K. (1994). The discrimination of many kinds of odor species using fuzzy reasoning and neural networks. Sensors & Actuators, 45, 159–165.CrossRefGoogle Scholar
  416. Yim, H. S., Kibbey, C. E., Ma, S. C., Kliza, D. M., Liu, D., Park, S. B., et al. (1993). Polymer membrane-based ion , gas , and bio-selective potentiometric sensors. Biosensors and Bioelectronics, 8, 1–38.CrossRefGoogle Scholar
  417. Yinon, J. (2003). Detection of explosives by electronic noses. Analytical Chemistry, 75(5), 99A–105A.CrossRefGoogle Scholar
  418. Young, A. W., & Ellis, H. D. (Eds.). (1989). Handbook of research on face processing. Amsterdam: Elsevier.Google Scholar
  419. Zabell, S. L. (1988). The probabilistic analysis of testimony. Journal of Statistical Planning and Inference, 20, 327–354.CrossRefGoogle Scholar
  420. Zander, M. (1979). The investigation of crime: A study of cases tried at the Old Bailey. Criminal Law Review, 1979, 203–219.Google Scholar
  421. Zier, J. (1993). The expert accountant in civil litigation. Toronto, ON: Butterworths.Google Scholar
  422. Binder, D. A., & Bergman, P. (1984). Fact investigation: From hypothesis to proof (American Casebook Series.). St Paul, MN: West Publ.Google Scholar
  423. Devlin, P. (1976). Report to the secretary of state for the Home Department of the Departmental Committee on Evidence of identification in criminal cases. London: HMSO.Google Scholar
  424. de Kleer, J. (1988). A general labeling algorithm for assumption-based truth maintenance. In Proceedings of the 7th national conference on artificial intelligence, pp. 188–192.Google Scholar
  425. Keppens, J., Shen, Q, & Lee, M. (2005). Compositional Bayesian modelling and its application to decision support in crime investigation. In Proceedings of the 19th international workshop on qualitative reasoning, pp. 138–148.Google Scholar
  426. Keppens, J., & Zeleznikow, J. (2003). A model based reasoning approach for generating plausible crime scene scenarios from evidence In G. Sartor (Ed.), Proceedings of the ninth International Conference on Artificial Intelligence and Law (ICAIL 2003), Edinburgh, Scotland, 24–28 June 2003. New York: ACM Press, pp. 51–59.Google Scholar
  427. Keppens, J., Shen, Q, & Shafer, B. (2005). Probabilistic abductive computation of evidence collection strategies in crime investigation. In Proceedings of the 10th international conference on artificial intelligence and law, pp. 215–224.Google Scholar
  428. Keppens, J., & Schafer, B. (2003a). Using the box to think outside it: Creative skepticism and computer decision support in criminal investigations. In Proceedings of the IVR 21st world congress special workshop on artificial intelligence in the law: Creativity in legal problem solving. http://www.meijigakuin.ac.jp/~yoshino/documents/ivr2003/keppens schafer.pdf
  429. Keppens, J., & Schafer, B. (2003b). Assumption based peg unification for crime scenario modelling. In Proceeding of the 2003 conference on legal knowledge and information systems; JURIX 2003: The eighteenth annual conference. Amsterdam: IOS Press. http://www.jurix.nl/pdf/j05 07.pdf
  430. Keppens, J., Shen, Q., & Price, C. (2010). Compositional Bayesian modelling for computation of evidence collection strategies. Applied Intelligence. In press. doi://10.1007/s10489-009-0208-5Google Scholar
  431. Keppens, J. (2007). Towards qualitative approaches to bayesian evidential reasoning. In Proceedings of the 11th international conference on artificial intelligence and law, pp. 17–25.Google Scholar
  432. Keppens, J. (2009). Conceptions of vagueness in subjective probability for evidential reasoning. In Proceedings of the 22nd annual conference on legal knowledge and information systems, pp. 89–99.Google Scholar
  433. Esuli, A. (2009a). PP-Index: Using permutation prefixes for efficient and scalable approximate similarity search. In Proceedings of the seventh workshop on Large-Scale Distributed Systems for information retrieval (LSDS IR’09), Boston, MA, 2009, pp. 17–24. http://www.esuli.it/fp content/attachs/publications/LSDS IR09.pdf
  434. Esuli, A. (2009b). MiPai: using the PP-Index to build an efficient and scalable similarity search system. In Proceedings of the second International Workshop on Similarity Search and Applications (SISAP’09), Prague, 2009, pp. 146–148.Google Scholar
  435. Esuli, A. (2010). PP-Index: Using permutation prefixes for efficient and scalable similarity search. In Proceedings of the eighteenth Italian Symposium on Advanced Database Systems (SEBD 2010), Rimini, Italy, 2010, pp. 318–325.Google Scholar
  436. Bolettieri, P., Esuli, A., Falchi, F., Lucchese, C., Perego, R., & Rabitti, F. (2009). Enabling content-based image retrieval in very large digital libraries. In Proceedings of the second workshop on very large digital libraries 2 October 2009, Corfu, Greece. Pisa, Italy: DELOS, an Association for Digital Libraries, pp. 43–50.Google Scholar
  437. Frowd, C. D., Pitchford, M., Bruce, V., Jackson, S., Hepton, G., Greenall, M., et al. (2010a). The psychology of face construction: Giving evolution a helping hand. Applied Cognitive Psychology. doi:10.1002/acp.1662.Google Scholar
  438. Johnson, M. K. (2007). Lighting and optical tools for image forensics. Ph.D. dissertation, Dartmouth College, September 2007. Posted at http://www.cs.dartmouth.edu/farid/publications/mkjthesis07.html
  439. Toland, J., & Rees, B. (2005). Applying case-based reasoning to law enforcement. International Association of Law Enforcement Intelligence Analysts Journal, 15.Google Scholar
  440. Keppens, J., & Zeleznikow, J. (2002). On the role of model-based reasoning in decision support in crime investigation. In Proceedings of the IASTED third international conference on Law and Technology (LawTech2002). Anaheim, CA: ACTA Press, pp. 77–83.Google Scholar
  441. Keppens, J., & Schafer, B. (2005). Assumption based peg unification for crime scenario modelling. In Proceeding of the 2005 conference on legal knowledge and information systems; JURIX 2005: The eighteenth annual conference. (Frontiers in Artificial Intelligence and Applications, 134). Amsterdam: IOS Press, pp. 49–58.Google Scholar
  442. Frowd, C., Nelson, L., Skelton, F., Noyce, R., Heard, P., Henry, J., et al. (2010b). Interviewing techniques for Darwinian facial composite systems. Submitted.Google Scholar
  443. Lisetti, C. L., & Schiano, D. J. (2000). Automatic facial expression interpretation: Where human-computer interaction, artificial intelligence and cognitive science intersect. In I. E. Dror & S. V. Stevenage (Eds.), Facial information processing: A multidisciplinary perspective. Special issue of Pragmatics & Cognition, 8(1): 185–235.Google Scholar
  444. Dror, I. E., & Stevenage, S. V. (Eds.). (2000). Facial information processing: A multidisciplinary perspective. Special issue of Pragmatics & Cognition, 8(1). Amsterdam: Benjamins.Google Scholar
  445. Wierzbicka, A. (2000). The semantics of human facial expressions. In I. E. Dror & S. V. Stevenage (Eds.), Facial information processing: A multidisciplinary perspective. Special issue of Pragmatics & Cognition, 8(1), 147–183.Google Scholar
  446. Ng, T.-T., & Chang, S.-F. (2004). A model for image splicing. At the IEEE International Conference on Image Processing (ICIP), Singapore, October 2004.Google Scholar
  447. Avcıbaş, İ., Bayram, S., Memon, N., Sankur, B., & Ramkumar, M. (2004). A classifier design for detecting image manipulations. In 2004 International Conference on Image Processing, ICIP ’04 (Vol. 4, pp. 2645–2648).Google Scholar
  448. Johnson, M. K., & Farid, H. (2005). Exposing digital forgeries by detecting inconsistencies in lighting. At the ACM Multimedia and Security Workshop, 2005.Google Scholar
  449. Johnson, M. K., & Farid, H. (2007b). Exposing digital forgeries through specular highlights on the eye. At the Ninth International Workshop on Information Hiding, Saint Malo, France, 2007.Google Scholar
  450. Johnson, M. K., & Farid, H. (2006a). Exposing digital forgeries through chromatic aberration. At the ACM Multimedia and security Workshop, Geneva, Switzerland, 2006.Google Scholar
  451. Ramamoorthi, R., & Hanrahan, P. (2001) An efficient representation for irradiance environment maps. In SIGGRAPH ’01: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM Press, 2001, pp. 497–500.Google Scholar
  452. Farid, H. (2008, June). Digital image forensics. Scientific American, 42–47.Google Scholar
  453. Debevec, P. (1998). Rendering synthetic objects into real scenes: Bridging traditional and imagebased graphics with global illumination and high dynamic range photography. In SIGGRAPH ’98: Proceedings of the 25th annual conference on computer graphics and interactive techniques. New York: ACM Press, pp. 189–198.Google Scholar
  454. Prag, J., & Neave, R. (1997) Making faces: Using forensic and archaeological evidence. London: Published for the Trustees of the British Museum by British Museum Press.Google Scholar
  455. Gerasimov, M. M. (about) (2007). Mikhail Gerasimov. Biographical Wikipedia [English] http://en.wikipedia.org/wiki/Mikhail_Gerasimov. Last modified on 24 April 2007, when accessed in August 2007. A Russian entry (Михаи́л Миха́йлович Гера́симов) is also available under http://ru.wikipedia.org/wiki/
  456. Wojtas, O. (1996). Forensics unmask dead poet. The Times Higher Education Supplement, London, August 23, p. 4.Google Scholar
  457. Nijboer, J. F. (2000). Challenges for the law of evidence. In C. M. Breur, M. M. Kommer, J. F. Nijboer, & J. M. Reijntjes (Eds.), New trends in criminal investigation and evidence, Vol. 2 = Proceedings of the second world conference on new trends in criminal investigation and evidence, Amsterdam, 10–15 December 1999. Antwerp, Belgium: Intersentia, 2000, pp. 1–9.Google Scholar
  458. Nijboer, J. F. (2008). Current issues in evidence and procedure: Comparative comments from a Continental perspective. International Commentary on Evidence, 6(2), Article 7. http://www.bepress.com/ice/vol6/iss2/art7
  459. Mahendra, B. (2007). Expert witness update. In an Expert Witness Supplement to The New Law Journal, 157(7294) (London, 26 October 2007), 1490–1491.Google Scholar
  460. Kaye, B. H. (1995). Science and the detective: Selected readings in forensic science. Weinheim, Baden-Württemberg: VCH Verlag.Google Scholar
  461. Arutyunov. (1963). See citations inside Keh (1984).Google Scholar
  462. Stærkeby, M. (2002). Forensic Entomology Pages, International (website). Division of Zoology, Department of Biology, University of Oslo, Oslo, Norway. http://www.uio.no/~mostarke/forens_ent/forensic_entomology.html
  463. Molina, D. K. (2009). Handbook of forensic toxicology for medical examiners. Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
  464. Dawid, A. P., Mortera, J., & Vicard, P. (2006). Representing and solving complex DNA identification cases using Bayesian networks. In Progress in forensic genetics 11 (Proceedings of the 21st international ISFG congress). International Congress Series, Vol. 1288. Amsterdam: Elsevier Science, pp. 484–91. doi:10.1016/j.ics.2005.09.115Google Scholar
  465. Dawid, A. P., & Mortera, J. (1994). Elementary Watson!: Coherent analysis of forensic evidence. Research Report 136, May. Department of Statistical Science, University College London.Google Scholar
  466. Rumelhart, D. E. (1975). Notes on a schema for stories. In D. G. Bobrow & A. Collins (Eds.), Representation and understanding: studies in cognitive science (pp. 185–210). New York: Academic.Google Scholar
  467. Pye, K. (2006). Evaluation of the significance of geological and soil trace evidence (abstract). In A. Ruffell (Ed.), Abstract book of geoscientists at crime scenes: First, inaugural meeting of the Geological Society of London, 20 December 2006 (pp. 24–15). Forensic Geoscience Group. http://www.geolsoc.org.uk/pdfs/FGtalks&abs_pro.pdf
  468. Bodziak, W. J. (2000). Footwear impression evidence. Boca Raton, FL: CRC Press.Google Scholar
  469. Galton, A. P. (1987). Temporal logics and their applications. London: Academic.Google Scholar
  470. Wooldridge, M., & van der Hoek, W. (2005). On obligations and normative ability: Towards a logical analysis of the social contract. Journal of Applied Logic, 3, 396–420.CrossRefGoogle Scholar
  471. Knight, B., Nissan, E., & Ma, J. (Eds.). (1999). Temporal logic in engineering. Special issue, Artificial Intelligence for Engineering Design, Analysis and Manufacturing (AIEDAM), 13(2).Google Scholar
  472. Cohn, A. G., Gooday, J. M., & Bennett, B. (1995). A comparison of structures in spatial and temporal logics. In R. Casati & G. White (Eds.), Philosophy and the cognitive sciences (pp. 409–422). Vienna: Holder-Pichler-Tempsky.Google Scholar
  473. Brace, N., Pike, G., Kemp, R., Tyrner, J., & Bennet, P. (2006). Does the presentation of multiple facial composites improve suspect identification? Applied Cognitive Psychology, 20, 213–226.CrossRefGoogle Scholar
  474. Bruce, V., Ness, H., Hancock, P. J. B., Newman, C., & Rarity, J. (2002). Four heads are better than one: Combining face composites yields improvements in face likeness. Journal of Applied Psychology, 87(5), 894–902.CrossRefGoogle Scholar
  475. Poulin, D., Mackaay [sic], E., Bratley, P., & Frémont, J. (1992). Time server: A legal time specialist. In A. Martino (Ed.), Expert systems in law (pp. 295–312). Amsterdam: North-Holland.Google Scholar
  476. Vila, L., & Yoshino, H. (1995). Temporal representation for legal reasoning. In: Proceedings of the Third International Workshop on Legal Expert Systems for the CISG, May 1995.Google Scholar
  477. Vila, L., & Yoshino, H. (1998). Time in automated legal reasoning. In A. A Martino & E. Nissan (Eds.), Law, computers and artificial intelligence: Special issue on Formal Models of Legal Time. In Information and Communications Technology Law, 7(3), 173–197.Google Scholar
  478. Knight, B., Ma, J., & Nissan, E. (1998). Representing temporal knowledge in legal discourse. In A. A. Martino & E. Nissan (Eds.), Formal models of legal time., Special issue, Information and Communications Technology Law, 7(3), 199–211.Google Scholar
  479. Allen, J. F. (1983a). Recognizing intentions from natural language utterances. Chapter 2 In M. Bradie & R. C. Berwick (Eds.), Computational models of discourse (pp. 108–166). Cambridge, MA: MIT Press.Google Scholar
  480. Farook, D. Y., & Nissan, E. (1998). Temporal structure and enablement representation for mutual wills: A Petri-net approach. In A. A. Martino & E. Nissan (Eds.), Formal models of legal time, special issue, Information and Communications Technology Law, 7(3), 243–267.Google Scholar
  481. Valette, R., & Pradin-Chézalviel, B. (1998). Time Petri nets for modelling civil litigation. In A. A. Martino & E. Nissan (Eds.), Formal models of legal time, special issue, Information and Communications Technology Law, 7(3), 269–280.Google Scholar
  482. Raskin, J.-F., Tan, Y.-H., & van der Torre, L. W. N. (1996). Modeling deontic states in Petri nets. Discussion Paper 111. Rotterdam, The Netherlands: Erasmus University Research Institute for Decision and Information Systems (EURIDIS).Google Scholar
  483. Arbabi, E., Boulic, R., & Thalmann, D. (2007a). A fast method for finding maximum range of motion in the hip joint. In Computer assisted orthopaedic surgery: 7th annual meeting of CAOS, international proceedings (pp. 497–500). [CAOS’07.] Germany: Pro BUSINESS, on behalf of the International Society for Computer Assisted Orthopaedic Surgery. Also, Report VRLAB CONF 2007 139. Lausanne: Virtual Reality Lab at the Swiss Federal Institute of Technology. http://infoscience.epfl.ch/getfile.py?recid=109304&mode=best
  484. Arbabi, E., Boulic, R., & Thalmann, D. (2007b). A fast method for finding range of motion in the human joints. In Proceedings of the 29th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBS’07), Lyon, France, August 23–26, 2007. Also, Report VRLAB CONF 2007 140. Lausanne: Virtual Reality Lab at the Swiss Federal Institute of Technology.Google Scholar
  485. Abaci, T., Mortara, M., Patane, G., Spagnuolo, M., Vexo, F., & Thalmann, D. (2005). Bridging geometry and semantics for object manipulation and grasping. In Proceedings of workshop towards Semantic Virtual Environments (SVE 2005). Also, Report VRLAB CONF 2005 021. Lausanne: Virtual Reality Lab at the Swiss Federal Institute of Technology. http://infoscience.epfl.ch/getfile.py?recid=99017&mode=best
  486. Gutiérrez, M., Thalmann, D., Vexo, F., Moccozet, L., Magnenat-Thalmann, N., Mortara, M., et al. (2005). An ontology of virtual humans: Incorporating semantics into human shapes. In Proceedings of the workshop towards Semantic Virtual Environments (SVE05), Villars, Switzerland, March 2005, pp. 57–67. Posted at http://vrlab.epfl.ch/Publications of the Virtual Reality Lab at the Swiss Federal Institute of Technology in Lausanne.
  487. Sawday, J. (1996). The body emblazoned: Dissection and the human body in renaissance culture. London: Routledge.Google Scholar
  488. Taubes, G. (2002). An interview with Dr. Michael I. Miller. In Cytes, ISI accessible at http://www.incites.com/scientists/DrMichaelIMiller.html
  489. Linford, N. (2002). The English heritage geophysical survey database. http://www.eng h.gov.uk/SDB/
  490. Mellett, J. S. (1996). GPR in forensic and archaeological work: Hits and misses. In Symposium on the Application of Geophysics to Environmental Engineering Problems (SAGEEP), 1991. Environmental & Engineering Geophysical Society Co., USA, pp. 487–491.Google Scholar
  491. Cui, Z., Cohn, A. G., & Randell, D. A. (1992). Qualitative simulation based on a logical formalism of space and time. In Proceedings of AAAI 92. Menlo Park, CA: AAAI Press, pp. 679–684.Google Scholar
  492. Hayes, P. J. (1985). Naive physics I: Ontology for liquids. Chapter 3 In J. R. Hobbs & R. C. Moore (Eds.), Formal theories of the commonsense world. Norwood, NJ: Ablex.Google Scholar
  493. Pearce, T. C., Schiffman, S. S., Nagle, H. T., & Gardner, J. W. (Eds.). (2002). Handbook of machine olfaction: Electronic nose technology. Weinheim, Baden-Württemberg: Wiley VCH. doi://10.1002/3527601597Google Scholar
  494. Gardner, J. W., & Bartlett, P. N. (1999). Electronic noses: Principles and applications. Oxford: Oxford University Press.Google Scholar
  495. Pamula, V. K. (2003). Detection of explosives. Chapter 23 In T. C. Pearce, S. S. Schiffman, H. T. Nagle, & J. W. Gardner (Eds.), Handbook of machine olfaction: Electronic nose technology (pp. 547–560). Weinheim, Baden-Württemberg: Wiley VCH Verlag. Published online: 2004. doi://10.1002/3527601597.ch23Google Scholar
  496. Gardner, J. W., & J. Yinon, J. (Eds.). (2004). Proceedings of the NATO advanced research workshop on electronic noses and sensors for the detection of explosives. (NATO Science Series 2003, Vol. 159). Dordrecht: Kluwer.Google Scholar
  497. Klock, B. A. (2001, April). Project plan for the evaluation of X ray threat detection of explosives at different subcertification weights. DOT/FAA/AR 01/81, Washington, DC: Office of Aviation Research. http://www.tc.faa.gov/its/worldpac/techrpt/ar01 81.pdfGoogle Scholar
  498. Casalinuovo, I. A., Di Pierro, D., Coletta, M., & Di Francesco, P. (2006). Application of electronic noses for disease diagnosis and food spoilage detection. Sensors, 6, 1428–1439.CrossRefGoogle Scholar
  499. Davis, O. (1999). Palynomorphs. At the website whose address is Retrieved in March 2007 http://www.geo.arizona.edu/palynology/ppalydef.html
  500. Hoen, P. (1999). The glossary: Part 4 (P–R). Laboratory of Palaeobotany and Palynology, University of Utrecht. Retrieved in March 2007 http://www.bio.uu.nl/~palaeo/glossary/glos p4.htm. Part of his Glossary of Pollen and Spore Terminology, 2nd edn. (http://www.bio.uu.nl/~palaeo/glossary/glos int.htm). First edition (LPP Contribution Series, No. 1, 1994) was by W. Punt, S. Blackmore, S. Nilsson, & A. Le Thomas [sic].
  501. Tschudy, R. H. (1961). Palynomorphs as indicators of facies environments in Upper Cretaceous and Lower Tertiary strata, Colorado and Wyoming. Wyoming Geological Association Guidebook 16. In Annual Field Conference, pp. 53–59.Google Scholar
  502. McBurney, P., & Parsons, S. (2001). Intelligent systems to support deliberative democracy in environmental regulation. In D. M. Peterson, J. A. Barnden, & E. Nissan (Eds.), Artificial Intelligence and Law, special issue, Information and Communications Technology Law, 10(1), 79–89.Google Scholar
  503. de Vey Mestdagh, K. (1999). Can computers administer the law? An expert system for environmental permit law. In Proceedings of legal knowledge based systems: JURIX 1999. Nijmegen, The Netherlands: Gerard Noodt Instituut, pp. 134–135.Google Scholar
  504. Henry, R. C., Lewis, C. W., & Collins, J. F. (1994). Vehicle related hydrocarbon source composition from ambient data: The GRACE/SAFER method. Environmental Science and Technology, 28, 823–832.CrossRefGoogle Scholar
  505. Henry, R. C., Spiegelman, C. H., Collins, J. F., & Park, J. F. [sic] (1997). Reported emissions of organic gases are not consistent with observations. Proceedings of the National Academy of Sciences USA, 94, 6596–6599.CrossRefGoogle Scholar
  506. Srihari, S. N., & Su, C. (2008). Computational methods for determining individuality. In Computational Forensics: Proceedings of the International Workshop, Washington, DC. (Lecture Notes in Computer Science, Vol. 5158). Berlin: Springer, pp. 11–21.Google Scholar
  507. Dawid, A. P. (1998). Modelling issues in forensic inference. In 1997 ASA proceedings Section on Bayesian Statistics, pp. 182–186. Alexandria, VA: The American Statistical Association.Google Scholar
  508. Dawid, A. P. (2001b). Bayes’s theorem and weighing evidence by juries. Research Report 219, April. Department of Statistical Science, University College London.Google Scholar
  509. Dawid, A. P. (2002). Bayes’s theorem and weighing evidence by juries. In R. Swinburne (Ed.), Bayes’s theorem. Proceedings of the British Academy, 113,71–90.Google Scholar
  510. Dawid, A. P. (2005a). Probability and statistics in the law. In Z. Ghahramani & R.G. Cowell (Eds.) Proceedings of the tenth international workshop on artificial intelligence and statistics, January 6–8 2005, Barbados. (Online at http://tinyurl.com/br8fl).
  511. Dawid, A. P., Mortera, J., Pascali, V. L., & van Boxel, D. W. (2002). Probabilistic expert systems for forensic inference from genetic markers. Scandinavian Journal of Statistics, 29, 577–595.CrossRefGoogle Scholar
  512. Bleay, S. (2009). Fingerprint development and imaging: Fundamental research to operational implementation. PowerPoint presentation, 1 July 2009. Home Office Scientific Development Branch, Sandridge, England. Posted at the website of the Higher Education Academy, York Science Park, York, England. Retrieved in 2010 at http://www.heacademy.ac.uk/assets/ps/documents/FORREST/2009/presentations/k2_bleay.pdf
  513. Moenssens, A. (1999). Is fingerprint identification a “science”? Forensic-Evidence.com. http://www.forensicevidence.com/site/ID0004 2.html
  514. Brislawn, C. M., Bradley, J. N., Onyshczak, R. J., & Hopper, T. (1996). The FBI compression standard for digitized fingerprint images. In Proceedings of the international society for optical engineering Denver, CO, pp. 344–355.Google Scholar
  515. Costello, B. D., Gunawardena, C. A., & Nadiadi, Y. M. (1994). Automated coincident sequencing for fingerprint identification. In Proceedings of the IEE colloquium on image processing for biometric measurement London, pp. 3.1–3.5.Google Scholar
  516. Emiroglu, I., & Akhan, M. B. (1997). Preprocessing of fingerprint images. In Proceedings of the IEE European conference on security and detection, Hertfordshire, England, pp. 147–151.Google Scholar
  517. Kristensen, T. (2010). Fingerprint identification: A support vector machine approach. In Proceedings of the second International Conference on Agents and Artificial Intelligence, ICAART 2010, Valencia, Spain, 22–24 January 2010, pp. 451–458.Google Scholar
  518. Lee, C.-J., & Wang, S.-D. (1999). A Gabor filter-base approach to fingerprint recognition. In Proceedings of the IEEE workshop on Signal Processing Systems (SiPS 99), pp. 371–378.Google Scholar
  519. Hao, Y., Tan, T., & Wang, Y. (2002). An effective algorithm for fingerprint matching. In TENCON ’02. Proceedings. 2002 IEEE region 10 conference on computers, communications, control and power engineering, 28–31 October 2002, Vol. 1, pp. 519–522. Also, technical report, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing. http://nlpr web.ia.ac.cn/english/irds/papers/haoying/tencon.pdf
  520. Ross, A., & Jain, A. K. (2003). Information fusion in biometrics. Pattern Recognition Letters, 24(13), 2115–2125.CrossRefGoogle Scholar
  521. Kenji, T., Aoki, T., Sasaki, Y., Higuchi, T., & Kobayashi, K. (2003). High-accuracy subpixel image registration based on phase-only correlation. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E86 A(8), 1925–2934.Google Scholar
  522. Akin, L. L. (2005). Blood interpretation at crime scenes. The Forensic Examiner, Summer 2005, 6–10. http://www.onsceneforensics.com/PDFs%20Forms/ACFEI_BLOOD_SPATTER_AKIN.pdf
  523. Hueske, E.E. (2002). Shooting incident investigation/Reconstruction tranining manual.Google Scholar
  524. Lukáš, J., Fridrich, J., & Goljan, M. (2006). Detecting digital image forgeries using sensor pattern noise. In Proceedings of the SPIE, Vol. 6072.Google Scholar
  525. Nissan, E. (1997b). Notions of place, II. In A. A. Martino (Ed.), Logica delle norme (pp. 303–361). Pisa, Italy: SEU.Google Scholar
  526. EnVision (2002). Computational anatomy: An emerging discipline. EnVision, 18(3). National Partnership for Advanced Computational Infrastructure. http://www.npaci.edu/enVision/v18.3/anatomy.html
  527. Donnelly, L. J. (2002c, May). Finding the silent witness: How forensic geology helps solve crimes. All-Party Parliamentary Group for Earth Science, Westminster Palace, Houses of Parliament. The Geological Society of London. Geoscientist, 12(5), 24.Google Scholar
  528. Fasel, I. R., Bartlett, M. S., & Movellan, J. R. (2002). A comparison of Gabor filter methods for automatic detection of facial landmarks. In Proceedings of the fifth international conference on automatic face and gesture recognition, Washington, DC, 21–21 May 2002, pp. 242–246.Google Scholar
  529. Kuglin, C. D., & Hines, D. C. (1975). The phase correlation image alignment method. In Proceedings of the international conference on cybernetics and society, pp. 163–165.Google Scholar
  530. Staples, E. J. (2000). Electronic nose simulation of olfactory response containing 500 orthogonal sensors in 10 seconds. In Proceedings of the 1999 IEEE Ultrasonics Frequency Control and Ferroelectrics Symposium, Lake Tahoe, CA, 2000, pp. 307–313.Google Scholar
  531. Amin, R., Bramer, M., & Emslie, R. (2003). Intelligent data analysis for conservation: Experiments with rhino horn fingerprint identification. Knowledge Based Systems, 16(5–6).Google Scholar
  532. Jain, A. K., Ross, A., & Prabhakar, S. (2001). Fingerprint matching using minutiae and texture features. In Proceedings of Image Processing International Conference (ICIP), Thessaloniki, Greece, 7–10 October 2001, Vol. 3, pp. 282–285.Google Scholar
  533. FORident Software. (2009). HemoSpat validation. [A white paper.] FORidenti Software Technical Paper. Ottawa, ON: FORident Software. 9 August 2009. http://hemospat.com/technical_papers/pdf/FORident%20Software%20Technical%20Paper%20-%20HemoSpat%20Validation.pdf
  534. Shurmer, H. V., Gardner, J. W., & Chan, H. T. (1989). The application of discrimination techniques to alcohols and tobacco using tin oxide sensors. Sensors & Actuators, 18, 359–369.Google Scholar
  535. Maloney, A., Nicloux, C., Maloney, K., & Heron, F. (2001). One-sided impact spatter and area-of-origin calculations. Journal of Forensic Identification, 61(2), 123–135. http://hemospat.com/papers/pdf/JFI%20-%20One-Sided%20Impact%20Spatter%20and%20Area-of-Origin%20Calculations.pdf Google Scholar
  536. Ito, K., Nakajima, H., Kobayashi, K., Aoki, T., & Higuchi, T. (2004). A fingerprint matching algorithm using phase-only correlation. IEICE Transactions on Fundamentals, E87-A(3), 682–691. (IEICE stands for ‘The Institute of Electronics, Information and Communication Engineers’).Google Scholar
  537. Staples, E. J. (1999). Electronic nose simulation of olfactory response containing 500 orthogonal sensors in 10 seconds. In Proceedings of the 1999 IEEE Ultrasonics Frequency Control and Ferroelectrics Symposium, Lake Tahoe, CA, 2000, pp. 307–313.Google Scholar
  538. Persaud, K. C. (2005). Medical applications of odor-sensing devices. International Journal of Lower Extremities Wounds, 4, 50–56.CrossRefGoogle Scholar
  539. Laufer, B. (1913). History of the fingerprint system. In Smithsonian Report for 1912 (pp. 631–652) (with 7 plates). Washington, DC: Smithsonian Institution.Google Scholar
  540. Laufer, B. (1917, May 25). Concerning the history of finger-prints. Science, 504, 505.Google Scholar
  541. Latourette, K. S. (1936). Biographical Memoir of Berthold Laufer, 1874–1934. Biographical Memoirs, 18(3). National Academy of Sciences of the United States of America. http://books.nap.edu/html/biomems/blaufer.pdf

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of ComputingGoldsmiths’ College, University of LondonLondonEngland

Personalised recommendations