Designing and Building an Agent-Based Model

Chapter

Abstract

This chapter discusses the process of designing and building an ­agent-based model, and suggests a set of steps to follow when using agent-based modelling as a research method. It starts with defining agent-based modelling and discusses its main concepts, and then it discusses how to design agents using different architectures. The chapter also suggests a standardized process consisting of a sequence of steps to develop agent-based models for social science research, and provides examples to illustrate this process.

Keywords

Social Science Research Residential Segregation Behavioural Rule Setup Procedure Segregation Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Recommended Reading

  1. Edmonds, B., & Scott, M. (2005). From KISS to KIDS – An ‘anti-simplistic’ modelling approach. In P. Davidson, B. Logan, & K. Takadema (Eds.), Multi-agent and multi-agent-based simulation. MABS, 2004. New York/Berlin: Springer.Google Scholar
  2. Epstein, J. M. (2006a). Generative social science. Princeton: Princeton University Press.Google Scholar
  3. Epstein, J. M. (2008). Why model? Journal of Artificial Societies and Social Simulation, 11(4), 12. Available at: http://jasss.soc.surrey.ac.uk/11/4/12.html
  4. Gilbert, N., & Troitzsch, K. G. (2005). Simulation for the social scientist. Milton Keynes: Open University Press.Google Scholar
  5. Gilbert, N. (2008a). Agent-based models. London: Sage.Google Scholar
  6. Moss, S. (2008). Alternative approaches to the empirical validation of agent-based models. Journal of Artificial Societies and Social Simulation, 11(1), 5. Available at: http://jasss.soc.surrey.ac.uk/11/1/5.html

References

  1. Acerbi, A., & Parisi, D. (2006). Cultural transmission between and within generations. Journal of Artificial Societies and Social Simulation 9(1). Available at: http://jasss.soc.surrey.ac.uk/9/1/9.html
  2. Allport, G. W. (1954). The nature of prejudice. Cambridge, MA: Addison-Wesley.Google Scholar
  3. Balci, O. (1994). Validation, verification, and testing techniques throughout the life cycle of a simulation study. Annals of Operations Research, 53, 121–173.CrossRefGoogle Scholar
  4. Crooks, A. T., & Castle, C. (2012). The integration of agent-based modelling and geographical information for geospatial simulation. In A. J. Heppenstall, A. T. Crooks, L. M. See & M. Batty (Eds.), Agent-based models of geographical systems (pp. 219–252). Dordrecht: Springer.Google Scholar
  5. Crooks, A. T., & Heppenstall, A. J. (2012). Introduction to agent-based modelling. In A. J. Heppenstall, A. T. Crooks, L. M. See & M. Batty (Eds.), Agent-based models of geographical systems (pp. 85–105). Dordrecht: Springer.Google Scholar
  6. Epstein, J. M. (2006b). Generative social science. Princeton: Princeton University Press.Google Scholar
  7. Epstein, J. M., & Axtell, R. (1996). Growing artificial societies: social science from the bottom up. Cambridge, MA: MIT Press.Google Scholar
  8. Friedman-Hill, E. (2003). Jesss in action: Rule-based systems in Java. Greenwich: Maning.Google Scholar
  9. Garson, D. G. (1998). Neural networks: An introductory guide for social scientists. London: Sage Publications.Google Scholar
  10. Gilbert, N. (2008b). Agent-based models. London: Sage.Google Scholar
  11. Gilbert, N., Pyka, A., Ahrweiler, P. (2001). Innovation networks: A simulation approach. Journal of Artificial Societies and Social Simulation, 4(3). Available at: http://jasss.soc.surrey.ac.uk/4/3/8.html
  12. Gilbert, N. et al. (2006). Emerging artificial societies through learning. Journal of Artificial Societies and Social Simulation, 9(2). Available at: http://jasss.soc.surrey.ac.uk/9/2/9.html
  13. Hutchins, E., & Hazlehurst, B. (1995). How to invent a lexicon: The development of sharedsymbols in interaction. In N. Gilbert & R. Conte (Eds.), Artificial societies: The computer simulation of social life (pp. 157–189). London: UCL Press.Google Scholar
  14. Jost, J. T., Banaji, M. R., & Nosek, B. A. (2004). A decade of system justification theory: Accumulated evidence of conscious and unconscious bolstering of the status quo. Political Psychology, 25(6), 881–919.CrossRefGoogle Scholar
  15. Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). Soar: An architecture for general intelligence. Artificial Intelligence, 33(1), 1–64.CrossRefGoogle Scholar
  16. Macy, M., & Willer, R. (2002). From factors to actors: Computational sociology and agent-based modeling. Annual Review of Sociology, 28, 143–166.CrossRefGoogle Scholar
  17. Massey, D. S., & Denton, N. A. (1988). The dimensions of residential segregation. Social Forces, 67(2), 281–315.Google Scholar
  18. Ngo, T. A., & See, L. M. (2012). Calibration and validation of agent-based models of land cover change. In A. J. Heppenstall, A. T. Crooks, L. M. See & M. Batty (Eds.), Agent-based models of geographical systems (pp. 181–196). Dordrecht: Springer.Google Scholar
  19. Parry, H. R., & Bithnell, M. (2012). Large scale agent-based modelling: A review and guidelines for model scaling. In A. J. Heppenstall, A. T. Crooks, L. M. See & M. Batty (Eds.), Agent-based models of geographical systems (pp. 525–542). Dordrecht: Springer.Google Scholar
  20. Schelling, T. C. (1971). Dynamic models of segregation. Journal of Mathematical Sociology, 1, 143–186.CrossRefGoogle Scholar
  21. Scott, J. (2000). Social network analysis (2nd ed.). London: Sage.Google Scholar
  22. Sherif, M. (1966). In common predicament; social psychology of intergroup conflict and cooperation. Boston: Houghton Mifflin.Google Scholar
  23. Sidanius, J., Pratto, F., van Laar, C., & Levin, S. (2004). Social dominance theory: Its agenda and method. Political Psychology, 25(6), 845–880.CrossRefGoogle Scholar
  24. Sun, R. (2006). The CLARION cognitive architecture: Extending cognitive modeling to social simulation. In R. Sun (Ed.), Cognition and multi-agent interaction: From cognitive modeling to social simulation (pp. 79–99). New York: Cambridge University Press.Google Scholar
  25. Tajfel, H. (1981). Human groups and social categories: Studies in social psychology. Cambridge: Cambridge University Press.Google Scholar
  26. Taatgen, N., Lbiere, C., & Anderson, J. (2006). Modeling paradigms in ACT-R. In R. Sun (Ed.), Cognition and multi-agent interaction: From cognitive modeling to social simulation (pp. 28–51). Cambridge: Cambridge University Press.Google Scholar
  27. Terna, P. (1997). A laboratory for agent based computational economics. In R. Conte, R. Hegselmann, & P. Terna (Eds.), Simulating social phenomena (pp. 77–88). Berlin: Springer.Google Scholar
  28. Wilensky, U. (1997a). NetLogo traffic basic model. Evanston: Center for Connected Learning and Computer-Based Modeling, Northwestern University. Available at: http://ccl.northwestern.edu/netlogo/models/TrafficBasic
  29. Wilensky, U. (1997b). NetLogo segregation model. Evanston: Center for Connected Learning and Computer-Based Modeling, Northwestern University. Available at: http://ccl.northwestern.edu/netlogo/models/Segregation
  30. Wilensky, U. (1999). NetLogo. Evanston: Center for Connected Learning and Computer- based Modeling, Northwestern University.Google Scholar
  31. Wray, R. E., & Jones, R. M. (2006). Considering Soar as an agent architecture. In R. Sun (Ed.), Cognition and multi-agent interaction: From cognitive modeling to social simulation (pp. 53–78). New York: Cambridge University Press.Google Scholar
  32. Ye, M., & Carley, K. M. (1995). Radar-Soar: Towards an artificial organization composed of intelligent agents. Journal of Mathematical Sociology, 20(2–3), 219–246.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Social Science Computing, Faculty of Economics and Political ScienceCairo UniversityCairoEgypt
  2. 2.CRESS, Department of SociologyUniversity of SurreyGuildfordUK

Personalised recommendations