Skip to main content

Cellular Automata in Urban Spatial Modelling

  • Chapter
  • First Online:
Agent-Based Models of Geographical Systems

Abstract

Cities and urban dynamics are today understood as self-organized complex systems. While the understanding of cities has changed, also the paradigm in modeling their dynamics has changed from a top-down to a bottom-up approach. Cellular automata models provide an excellent framework for urban spatial modeling of complex dynamics and the accumulation of local actions. The first part of this chapter describes the basic concepts of cellular automata. The second part discusses the definition of complexity and the complex features of cellular automata. The history and principles of urban cellular automata models are introduced in the third part.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Ahmadi, K., Heppenstall, A. J., Hogg, J., & See, L. (2009a). A fuzzy cellular automata urban growth model (FCAUGM) for the city of Riyadh, Saudi Arabia. Part 1: Model structure and validation. Applied Spatial Analysis, 2(1), 65–83.

    Article  Google Scholar 

  • Al-Ahmadi, K., Heppenstall, A. J., Hogg, J., & See, L. (2009b). A fuzzy cellular automata urban growth model (FCAUGM) for the city of Riyadh, Saudi Arabia. Part 2: Scenario analysis. Applied Spatial Analysis, 2(2), 85–105.

    Article  Google Scholar 

  • Al-Ahmadi, K., See, L., Heppenstall, A., & Hogg, J. (2009). Calibration of a fuzzy cellular automata model of urban dynamics in Saudi Arabia. Ecological Complexity, 6(2), 80–101.

    Article  Google Scholar 

  • Ascher, F. (2004). Métapolis: A third modern urban revolution. Changes in urban scale and shape in France. In L. Bölling & T. Sieverts (Eds.), Mitten am rand. Auf dem weg von der vorstadt über die zwischenstadt zur regionalen stadtlandschaft. Zwischenstadt Band 1 (pp. 24–37). Wuppertal: Werlag Müller  +  Busmann Kg.

    Google Scholar 

  • Batty, M. (2005). Cities and complexity. Understanding cities with cellular automata, agent-based models and fractals. London: Academic.

    Google Scholar 

  • Batty, M., & Xie, Y. C. (1997). Possible urban automata. Environment and Planning –B Planning & Design, 21, S31–S38.

    Article  Google Scholar 

  • Batty, M., Xie, Y., & Sun, Z. (1999). Modeling urban dynamics through GIS-based cellular automata. Computers, Environments and Urban Systems, 233, 205–233.

    Article  Google Scholar 

  • Benenson, I., & Torrens, P. (2004). Geosimulation – Automata-based modeling of urban phenomena. London: Wiley.

    Book  Google Scholar 

  • Casti, J. L. (1997). Would-be worlds: How simulation is changing the frontiers of science. New York: Wiley.

    Google Scholar 

  • Casti, J. L. (2002). “Biologizing” control theory: How to make a control system come alive. Complexity, 4(4), 10–12.

    Article  Google Scholar 

  • Chapin, S. F., & Weiss, S.F. (1968). A probabilistic model for residential growth. Transportation Research, 2, 375–390.

    Article  Google Scholar 

  • Clarke, K. C. (1997). Land transition modeling with deltatrons. Accessed Nov 2009, from http://www.geog.ucsb.edu/~kclarke/Papers/deltatron.html

  • Clarke, K. C., & Gaydos, L. J. (1998). Loose coupling a cellular automaton model and GIS: Long term growth prediction for San Francisco and Washington/Baltimore. International Journal of Geographical Information Science, 12(7), 699–714.

    Article  Google Scholar 

  • Clarke, K. C., Hoppen, S., & Gaydos, L. J. (1997). A self-modifying cellular automata model of historical urbanization in the San Francisco Bay area. Environment and Planning B: Planning and Design, 24(2), 247–261.

    Article  Google Scholar 

  • Couclelis, H. (1985). Cellular worlds: A framework for modeling micro-macro dynamics. Environment and Planning A, 17, 585–596.

    Article  Google Scholar 

  • Gardner, M. (1970). The fantastic combinations of John Conway’s new solitaire game “Life”. Scientific American, 223(10), 120–123.

    Article  Google Scholar 

  • Hägerstrand, T. (1952). The propagation of innovation waves. Lund Studies in Geography B, Human Geography, 4, 3–19.

    Google Scholar 

  • Holland, J. H. (1998). Emergence – From chaos to order. Oxford: Oxford University Press.

    Google Scholar 

  • Ilachinski, A. (2001). Cellular automata – A discrete universe. New Jersey/London/Singapore/Hong Kong: World Scientific Publishing Co. Pte. Ltd.

    Google Scholar 

  • Iltanen, S. (2008). Urban generator – Kaupunkirakenteen kasvun mallinnusmenetelmä. Tampere: Tampere University of Technology, Urban Planning and Design, Juvenes Print.

    Google Scholar 

  • Iltanen, S. (2011). Combining urban morphological network analysis with urban growth model SLEUTH. Paper presented at Computers in Urban Planning and Urban management, Lake Louise 5 July to 8 July 2011.

    Google Scholar 

  • Itami, R. (1988). Cellular worlds: Models for dynamic conception of landscapes. Landscape Architecture, 78(5), 52–57.

    Google Scholar 

  • Jacobs, J. (1961). The death and life of great American cities. New York: Vintage Books, Random House.

    Google Scholar 

  • Kauffmann, S. (2007). Beyond reductionism: Reinventing the sacred. Zygon, 42(4), 903–914.

    Article  Google Scholar 

  • Lathrop, G. T., & Hamburg, J. R. (1965). An opportunity-accessibility model for allocating regional growth. Journal of the American Institute of Planners, 31, 95–103.

    Article  Google Scholar 

  • Lindenmayer, A. (1968). Mathematical models for cellular interaction in development I. Filaments with one-sided inputs. Journal of Theoretical Biology, 18, 280–289.

    Article  Google Scholar 

  • Liu, Y. (2009). Modelling urban development with geographical information systems and cellular automata. New York: CRC Press.

    Google Scholar 

  • Phipps, M. (1989). Dynamic behavior of cellular automata under the constraint of neighborhood coherence. Geographical Analysis, 21, 197–215.

    Article  Google Scholar 

  • Phipps, M., & Langlois, A. (1997). Spatial dynamics, cellular automata, and parallel processing computers. Environment and Planning B: Planning and Design, 24(2), 193–204.

    Article  Google Scholar 

  • Santé, I., Garcia, A. M., Miranda, D., & Crecente, R. (2010). Cellular automata models for the simulation of real-world urban processes: A review and analysis. Landscape and Urban Planning, 96(2), 108–122.

    Article  Google Scholar 

  • Schiff, J. L. (2008). Cellular automata – A discrete view of the world. Hoboken: Wiley.

    Google Scholar 

  • Tobler, W. (1979). Cellular geography. In S. Gale & G. Ollson (Eds.), Philosophy in geography (pp. 379–386). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Torrens, P. (2009). Cellular automata. In K. Rob & T. Nigel (Eds.), International encyclopedia of human geography (pp. 1–4). London: Elsevier.

    Chapter  Google Scholar 

  • Turing, A. (1936). On computable numbers with an application to the entscheidungsproblem. Proceedings of the London Mathematical Society, 42(2), 230–265.

    Google Scholar 

  • von Neumann, J. (1966). Theory of self-reproducing automata. In A. W. Burks (Ed.), Urbana and London: University of Illinois Press, ISBN 0598377980.

    Google Scholar 

  • White, R., & Engelen, G. (1993). Cellular-automata and fractal urban form – A cellular modeling approach to the evolution of urban land-use patterns. Environment and Planning A, 25(8), 1175–1199.

    Article  Google Scholar 

  • White, R., & Engelen, G. (2000). High-resolution integrated modeling of the spatial dynamics of urban and regional systems. Computers, Environment and Urban Systems, 24, 383–400.

    Article  Google Scholar 

  • Wolfram, S. (1984). Universality and complexity in Cellular Automata. Physica D, 10, 1–35.

    Article  Google Scholar 

  • Wolfram, S. (1988). Complex systems theory. Emerging syntheses in science. Proceedings of the Founding Workshops of the Santa Fe Institute, vol. 1 (pp. 183–189). Reading: Addison-Wesley.

    Google Scholar 

  • Wolfram, S. (2002). A new kind of science. Champaign: Wolfram Media.

    Google Scholar 

  • Wu, F. (1996). A Linguistic cellular automata simulation approach for sustainable land development in a fast growing region. Computers, Environment and Urban Systems, 20(6), 367–387.

    Article  Google Scholar 

  • Xie, Y. C. (1996). A generalized model for cellular urban dynamics. Geographical Analysis, 28(4), 350–373.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanna Iltanen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Iltanen, S. (2012). Cellular Automata in Urban Spatial Modelling. In: Heppenstall, A., Crooks, A., See, L., Batty, M. (eds) Agent-Based Models of Geographical Systems. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8927-4_4

Download citation

Publish with us

Policies and ethics