Advertisement

Cellular Automata in Urban Spatial Modelling

  • Sanna Iltanen
Chapter

Abstract

Cities and urban dynamics are today understood as self-organized complex systems. While the understanding of cities has changed, also the paradigm in modeling their dynamics has changed from a top-down to a bottom-up approach. Cellular automata models provide an excellent framework for urban spatial modeling of complex dynamics and the accumulation of local actions. The first part of this chapter describes the basic concepts of cellular automata. The second part discusses the definition of complexity and the complex features of cellular automata. The history and principles of urban cellular automata models are introduced in the third part.

Keywords

Cellular Automaton Cellular Automaton Urban Growth Transition Rule Cellular Automaton Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Al-Ahmadi, K., Heppenstall, A. J., Hogg, J., & See, L. (2009a). A fuzzy cellular automata urban growth model (FCAUGM) for the city of Riyadh, Saudi Arabia. Part 1: Model structure and validation. Applied Spatial Analysis, 2(1), 65–83.CrossRefGoogle Scholar
  2. Al-Ahmadi, K., Heppenstall, A. J., Hogg, J., & See, L. (2009b). A fuzzy cellular automata urban growth model (FCAUGM) for the city of Riyadh, Saudi Arabia. Part 2: Scenario analysis. Applied Spatial Analysis, 2(2), 85–105.CrossRefGoogle Scholar
  3. Al-Ahmadi, K., See, L., Heppenstall, A., & Hogg, J. (2009). Calibration of a fuzzy cellular automata model of urban dynamics in Saudi Arabia. Ecological Complexity, 6(2), 80–101.CrossRefGoogle Scholar
  4. Ascher, F. (2004). Métapolis: A third modern urban revolution. Changes in urban scale and shape in France. In L. Bölling & T. Sieverts (Eds.), Mitten am rand. Auf dem weg von der vorstadt über die zwischenstadt zur regionalen stadtlandschaft. Zwischenstadt Band 1 (pp. 24–37). Wuppertal: Werlag Müller  +  Busmann Kg.Google Scholar
  5. Batty, M. (2005). Cities and complexity. Understanding cities with cellular automata, agent-based models and fractals. London: Academic.Google Scholar
  6. Batty, M., & Xie, Y. C. (1997). Possible urban automata. Environment and Planning –B Planning & Design, 21, S31–S38.CrossRefGoogle Scholar
  7. Batty, M., Xie, Y., & Sun, Z. (1999). Modeling urban dynamics through GIS-based cellular automata. Computers, Environments and Urban Systems, 233, 205–233.CrossRefGoogle Scholar
  8. Benenson, I., & Torrens, P. (2004). Geosimulation – Automata-based modeling of urban phenomena. London: Wiley.CrossRefGoogle Scholar
  9. Casti, J. L. (1997). Would-be worlds: How simulation is changing the frontiers of science. New York: Wiley.Google Scholar
  10. Casti, J. L. (2002). “Biologizing” control theory: How to make a control system come alive. Complexity, 4(4), 10–12.CrossRefGoogle Scholar
  11. Chapin, S. F., & Weiss, S.F. (1968). A probabilistic model for residential growth. Transportation Research, 2, 375–390.CrossRefGoogle Scholar
  12. Clarke, K. C. (1997). Land transition modeling with deltatrons. Accessed Nov 2009, from http://www.geog.ucsb.edu/~kclarke/Papers/deltatron.html
  13. Clarke, K. C., & Gaydos, L. J. (1998). Loose coupling a cellular automaton model and GIS: Long term growth prediction for San Francisco and Washington/Baltimore. International Journal of Geographical Information Science, 12(7), 699–714.CrossRefGoogle Scholar
  14. Clarke, K. C., Hoppen, S., & Gaydos, L. J. (1997). A self-modifying cellular automata model of historical urbanization in the San Francisco Bay area. Environment and Planning B: Planning and Design, 24(2), 247–261.CrossRefGoogle Scholar
  15. Couclelis, H. (1985). Cellular worlds: A framework for modeling micro-macro dynamics. Environment and Planning A, 17, 585–596.CrossRefGoogle Scholar
  16. Gardner, M. (1970). The fantastic combinations of John Conway’s new solitaire game “Life”. Scientific American, 223(10), 120–123.CrossRefGoogle Scholar
  17. Hägerstrand, T. (1952). The propagation of innovation waves. Lund Studies in Geography B, Human Geography, 4, 3–19.Google Scholar
  18. Holland, J. H. (1998). Emergence – From chaos to order. Oxford: Oxford University Press.Google Scholar
  19. Ilachinski, A. (2001). Cellular automata – A discrete universe. New Jersey/London/Singapore/Hong Kong: World Scientific Publishing Co. Pte. Ltd.Google Scholar
  20. Iltanen, S. (2008). Urban generator – Kaupunkirakenteen kasvun mallinnusmenetelmä. Tampere: Tampere University of Technology, Urban Planning and Design, Juvenes Print.Google Scholar
  21. Iltanen, S. (2011). Combining urban morphological network analysis with urban growth model SLEUTH. Paper presented at Computers in Urban Planning and Urban management, Lake Louise 5 July to 8 July 2011.Google Scholar
  22. Itami, R. (1988). Cellular worlds: Models for dynamic conception of landscapes. Landscape Architecture, 78(5), 52–57.Google Scholar
  23. Jacobs, J. (1961). The death and life of great American cities. New York: Vintage Books, Random House.Google Scholar
  24. Kauffmann, S. (2007). Beyond reductionism: Reinventing the sacred. Zygon, 42(4), 903–914.CrossRefGoogle Scholar
  25. Lathrop, G. T., & Hamburg, J. R. (1965). An opportunity-accessibility model for allocating regional growth. Journal of the American Institute of Planners, 31, 95–103.CrossRefGoogle Scholar
  26. Lindenmayer, A. (1968). Mathematical models for cellular interaction in development I. Filaments with one-sided inputs. Journal of Theoretical Biology, 18, 280–289.CrossRefGoogle Scholar
  27. Liu, Y. (2009). Modelling urban development with geographical information systems and cellular automata. New York: CRC Press.Google Scholar
  28. Phipps, M. (1989). Dynamic behavior of cellular automata under the constraint of neighborhood coherence. Geographical Analysis, 21, 197–215.CrossRefGoogle Scholar
  29. Phipps, M., & Langlois, A. (1997). Spatial dynamics, cellular automata, and parallel processing computers. Environment and Planning B: Planning and Design, 24(2), 193–204.CrossRefGoogle Scholar
  30. Santé, I., Garcia, A. M., Miranda, D., & Crecente, R. (2010). Cellular automata models for the simulation of real-world urban processes: A review and analysis. Landscape and Urban Planning, 96(2), 108–122.CrossRefGoogle Scholar
  31. Schiff, J. L. (2008). Cellular automata – A discrete view of the world. Hoboken: Wiley.Google Scholar
  32. Tobler, W. (1979). Cellular geography. In S. Gale & G. Ollson (Eds.), Philosophy in geography (pp. 379–386). Dordrecht: Kluwer.CrossRefGoogle Scholar
  33. Torrens, P. (2009). Cellular automata. In K. Rob & T. Nigel (Eds.), International encyclopedia of human geography (pp. 1–4). London: Elsevier.CrossRefGoogle Scholar
  34. Turing, A. (1936). On computable numbers with an application to the entscheidungsproblem. Proceedings of the London Mathematical Society, 42(2), 230–265.Google Scholar
  35. von Neumann, J. (1966). Theory of self-reproducing automata. In A. W. Burks (Ed.), Urbana and London: University of Illinois Press, ISBN 0598377980.Google Scholar
  36. White, R., & Engelen, G. (1993). Cellular-automata and fractal urban form – A cellular modeling approach to the evolution of urban land-use patterns. Environment and Planning A, 25(8), 1175–1199.CrossRefGoogle Scholar
  37. White, R., & Engelen, G. (2000). High-resolution integrated modeling of the spatial dynamics of urban and regional systems. Computers, Environment and Urban Systems, 24, 383–400.CrossRefGoogle Scholar
  38. Wolfram, S. (1984). Universality and complexity in Cellular Automata. Physica D, 10, 1–35.CrossRefGoogle Scholar
  39. Wolfram, S. (1988). Complex systems theory. Emerging syntheses in science. Proceedings of the Founding Workshops of the Santa Fe Institute, vol. 1 (pp. 183–189). Reading: Addison-Wesley.Google Scholar
  40. Wolfram, S. (2002). A new kind of science. Champaign: Wolfram Media.Google Scholar
  41. Wu, F. (1996). A Linguistic cellular automata simulation approach for sustainable land development in a fast growing region. Computers, Environment and Urban Systems, 20(6), 367–387.CrossRefGoogle Scholar
  42. Xie, Y. C. (1996). A generalized model for cellular urban dynamics. Geographical Analysis, 28(4), 350–373.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.School of ArchitectureTampere University of TechnologyTampereFinland

Personalised recommendations