Skip to main content

Reflections and Conclusions: Geographical Models to Address Grand Challenges

  • Chapter
  • First Online:
Book cover Agent-Based Models of Geographical Systems

Abstract

This chapter provides some general reflections on the development of ABM in terms of the applications presented in this book. We focus on the dilemma of building rich models that tend to move the field from strong to weaker styles of prediction, raising issues of validation in environments of high diversity and variability. We argue that we need to make progress on these issues while at the same time extending our models to deal with cross-cutting issues that define societal grand challenges such as climate change, energy depletion, aging, migration, security, and a host of other global issues. We pick up various pointers to how we might best use models in a policy context that have been introduced in many of the applications presented within this book and we argue that in the future, we need to develop a more robust approach to how we might use such models in policy making and planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    ABM is also taken to mean Agent-Based Model (s) as well as Modelling.

References

  • Axtell, R., Axelrod, R., Epstein, J. M., & Cohen, M. D. (1996). Aligning simulation models: A case study and results. Computational and Mathematical Organization Theory, 1, 123–141.

    Article  Google Scholar 

  • Banos, A., & Genre-Grandpierre, C. (2012). Towards new metrics for urban road networks: Some preliminary evidence from agent-based simulations. In A. J. Heppenstall, A. T. Crooks, L. M. See, & M. Batty (Eds.), Agent-based models of geographical systems (pp. 627–642). Dordrecht: Springer.

    Google Scholar 

  • Barros, J. (2012). Exploring urban dynamics in Latin American cities using an agent-based simulation approach. In A. J. Heppenstall, A. T. Crooks, L. M. See, & M. Batty (Eds.), Agent-based models of geographical systems (pp. 571–589). Dordrecht: Springer.

    Google Scholar 

  • Batty, M. (2010). Integrated models and grand challenges. ArcNews, Winter 2010/2011. Available at http://www.esri.com/news/arcnews/winter1011articles/integrated-models.html. Accessed 16 June 2011.

  • Castiglione, F. (2003, November 3–6). Large-scale agent-based models: Perspectives and requirements, hot topics. Workshop: Agent Based Modeling and Simulation, The Institute for Mathematics and its Applications, University of Minnesota. Available at http://www.ima.umn.edu/talks/workshops/11-3-6.2003/castiglione/IMA-WrkshpABM2003.pdf. Accessed 16 June 2011.

  • Epstein, J. M. (2008). Why model? Journal of Artificial Societies and Social Simulation, 11(4), 12. Available at http://jasss.soc.surrey.ac.uk/11/4/12.html. Accessed 16 June 2011.

  • Greenberger, M., Crenson, M., & Crissey, B. L. (1976). Models in the policy process: Public decision making in the computer era. New York: Russell Sage Foundation/Basic Books.

    Google Scholar 

  • Gulden, T. R., & Hammond, R. A. (2012). Beyond Zipf: An agent-based understanding of city size distributions. In A. J. Heppenstall, A. T. Crooks, L. M. See, & M. Batty (Eds.), Agent-based models of geographical systems (pp. 677–704). Dordrecht: Springer.

    Google Scholar 

  • Harland, K., & Heppenstall, A. J. (2012). Using agent-based models for education planning: Is the UK education system agent based? In A. J. Heppenstall, A. T. Crooks, L. M. See, & M. Batty (Eds.), Agent-based models of geographical systems (pp. 481–497). Dordrecht: Springer.

    Google Scholar 

  • Iltanen, S. (2012). Cellular automata in urban spatial modelling. In A. J. Heppenstall, A. T. Crooks, L. M. See, & M. Batty (Eds.), Agent-based models of geographical systems (pp. 69–84). Dordrecht: Springer.

    Google Scholar 

  • Johansson, A., & Kretz, T. (2012). Applied pedestrian modeling. In A. J. Heppenstall, A. T. Crooks, L. M. See, & M. Batty (Eds.), Agent-based models of geographical systems (pp. 451–462). Dordrecht: Springer.

    Google Scholar 

  • Malleson, N. (2012). Using agent-based models to simulate crime. In A. J. Heppenstall, A. T. Crooks, L. M. See, & M. Batty (Eds.), Agent-based models of geographical systems (pp. 411–434). Dordrecht: Springer.

    Google Scholar 

  • Ngo, T. N., & See, L. M. (2012). Calibration and validation of agent-based models of land cover change. In A. J. Heppenstall, A. T. Crooks, L. M. See & M. Batty (Eds.), Agent-based models of geographical systems (pp. 181–196). Springer.

    Google Scholar 

  • PACER (2011). National Center for the Study of Preparedness and Catastrophic Event Response (PACER). Available at http://www.orau.gov/dhssummit/factsheet/PACER2011.pdf. Accessed 16 June 2011.

  • Pumain, D. (2012). Multi-agent system modelling for urban systems: The series of SIMPOP models. In A. J. Heppenstall, A. T. Crooks, L. M. See, & M. Batty (Eds.), Agent-based models of geographical systems (pp. 721–738). Dordrecht: Springer.

    Google Scholar 

  • Simoes, J. A. (2012). An agent-based/network approach to spatial epidemics. In A. J. Heppenstall, A. T. Crooks, L. M. See, & M. Batty (Eds.), Agent-based models of geographical systems (pp. 591–610). Dordrecht: Springer.

    Google Scholar 

  • Smith, D. M. (2012). Simulating spatial health inequalities. In A. J. Heppenstall, A. T. Crooks, L. M. See, & M. Batty (Eds.), Agent-based models of geographical systems (pp. 499–510). Dordrecht: Springer.

    Google Scholar 

  • van der Leeuw, S. E. (2004). Why model? Cybernetics and Systems, 35, 117–128.

    Article  Google Scholar 

  • Walsh, C. L., Dawson, R. J., Hall, J. W., Barr, S. L., Batty, M., Bristow, A. L., Carney, S., Dagoumas, A. S., Ford, A. C., Harpham, C., Tight, M. R., Watters, H., & Zanni, A. M. (2011). Assessment of climate change mitigation and adaptation in cities. Proceedings of the Institution of Civil Engineers: Urban Design and Planning, 164(2), 75–84.

    Article  Google Scholar 

  • Wu, B. M., & Birkin, M. H. (2012). Agent-based extensions to a spatial microsimulation model of demographic change. In A. J. Heppenstall, A. T. Crooks, L. M. See, & M. Batty (Eds.), Agent-based models of geographical systems (pp. 347–360). Dordrecht: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison J. Heppenstall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Heppenstall, A.J., Crooks, A.T., Batty, M., See, L.M. (2012). Reflections and Conclusions: Geographical Models to Address Grand Challenges. In: Heppenstall, A., Crooks, A., See, L., Batty, M. (eds) Agent-Based Models of Geographical Systems. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8927-4_37

Download citation

Publish with us

Policies and ethics