Multi-agent System Modelling for Urban Systems: The Series of SIMPOP Models

  • Denise Pumain


The SIMPOP simulation model was the first application of a multi-agent system (MAS) in geography and has been followed by a series of related applications. This chapter summarizes a few specific features of this series of models and the main insights that have been gained from this experiment. As the first objective of these models was to reconstruct the evolution of urban settlements at broad scales in geographical space and time (i.e. at national or continental levels and for decades or centuries), we explain the selection of the stylised facts making up knowledge about the dynamics of complex urban systems. They are used in the simulation models so as to reconstruct the interaction networks structuring the systems of cities. The originality of SIMPOP is thus to simulate the emergence and further hierarchical and functional differentiation of interdependent cities from interactions between them, so that the agents in this model are immobile entities, representing complex aggregation of individuals at meso-level. The quality of MAS is underlined for its flexibility in modelling spatial interactions with varied geographical configurations, and for its ability to deal with objects occurring on different scales, between geospatial entities that have expanding range of activities. We explain how we set about restricting the impact of the difficulties inherent in this type of modelling, which have been the subject of frequent criticism, in particular for their excessive complexity, thought to make any validation procedure unfeasible. In particular, we endeavour to describe in detail the various stages of model construction, on the basis of stylised facts obtained via numerous observations and comparisons, and set out to perform a multi-scale validation by testing the plausibility of the results delivered by the model at different aggregation levels. However, despite these promising methods of validation, further improvements are necessary for fully exploiting the capacities of simulation by using more powerful computing devices and validation methods. In this direction, the generic model SIMPOP will be completed and ­transferred to an open and scalable simulation platform, and specific versions will be developed and tested for the main regions of the world.


Urban Growth Stylise Fact Spatial Interaction Urban System City Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allen, P. (1997). Cities and regions as self-organising systems. Amsterdam: Gordon and Breach.Google Scholar
  2. Banos, A. (2009). Simulating pedestrian behavior in complex and dynamic environments: An agent-based perspective. In F. Bavaud & C. Mager (Eds.), European handbook of theoretical and quantitative geography (pp. 1–27). Lausanne: FGSE.Google Scholar
  3. Batty, M. (2008). Fifty years of urban modelling: Macrostatics to micro dynamics. In S. Albeverio, D. Andrey, P. Giordano, & A. Vancheri (Eds.), The dynamics of complex urban systems (pp. 1–20). Heidelberg: Physica Verlag.CrossRefGoogle Scholar
  4. Batty, M., & Torrens, P. (2001). Modelling complexity. The limits to prediction. Cybergeo, 201, 1–24.Google Scholar
  5. Berry, B. J. L. (1964). Cities as systems within systems of cities. Papers of the Regional Science Association, 13, 147–163.Google Scholar
  6. Bretagnolle, A. (1999). Les systèmes de villes dans l’espace-temps : effets de l’accroissement de la vitesse des déplacements sur la taille et l’espacement des villes. Thèse de doctorat de l’Université Paris I.Google Scholar
  7. Bretagnolle, A., & Pumain, D. (2010). Simulating urban networks through multiscalar space-time dynamics (Europe and United States, 17th -20th centuries). Urban Studies, 47(13), 2819–2839.CrossRefGoogle Scholar
  8. Bretagnolle, A., Giraud T., & Mathian H. (2008). La mesure de l’urbanisation des États-Unis, des premiers compto.irs coloniaux aux Metropolitan Statistical Areas (1790–2000). Cybergeo, 427, 1–36.Google Scholar
  9. Bura, S., Guérin-Pace, F., Mathian, H., Pumain, D., & Sanders, L. (1996). Multi-agent systems and the dynamics of a settlement system. Geographical Analysis, 28(2), 161–178.CrossRefGoogle Scholar
  10. Deissenberg, C., van der Hoog, S., & Dawid, H. (2008). Eurace: A massively parallel agent-based model of the European economy. Applied Mathematics and Computation, 204(2), 541–552.CrossRefGoogle Scholar
  11. Diamond, J. M. (1997). Guns, germs and steel: The fates of human societies. W.W. Norton & Co.Google Scholar
  12. Ferber, J. (1995). Les systèmes multi-agents. Vers une intelligence collective. Paris: Inter Editions.Google Scholar
  13. Glisse, B. (2007). Exploration scientifique par la conception collaborative de systèmes multi-agents. Thèse d’informatique de l’Université Paris 6.Google Scholar
  14. Gulden, T. R., & Hammond, R. A. (2012). Beyond Zipf: An agent-based understanding of city size distributions. In A. J. Heppenstall, A. T. Crooks, L. M. See, & M. Batty (Eds.), Agent-based models of geographical systems (pp. 677–704). Dordrecht: Springer.Google Scholar
  15. Hägerstrand, T. (1952). The propagation of innovation waves. Lund: The Royal University of Lund.Google Scholar
  16. Lane, D., Pumain, D., van der Leeuw, S., & West, G. (Eds.). (2009). Complexity perspectives on innovation and social change (Methodos series, Vol. 7). Berlin: ISCOM, Springer.Google Scholar
  17. Louail, T. (2010). Comparer les morphogenèses urbaines en Europe et aux Etats-Unis par la simulation à base d’agents – Approches multi-niveaux et environnements de simulation spatiale. Université Paris 6, thèse de doctorat.Google Scholar
  18. Mathian, H., & Sanders, L. (2009). “Jeux d’échelles dans les pratiques de calibrage et de validation des modèles de simulation en géographie ”, atelier scientifique du CNRS, “Modélisation des phénomènes sociaux et spatiaux: évaluation et validation des modèles de simulation individu-centrés”, Berder 12–14 mai.
  19. Morrill, R. L. (1965). Migration and the spread and growth of urban settlement (Lund studies in geography, series B, Vol. 26). Lund: Royal University of Lund, Department of Geography.Google Scholar
  20. Ngo, T. A., & See, L. M. (2012). Calibration and validation of agent-based models of land cover change. In A. J. Heppenstall, A. T. Crooks, L. M. See, & M. Batty (Eds.), Agent-based models of geographical systems (pp. 181–196). Dordrecht: Springer.Google Scholar
  21. Paulus, F. (2004). Coévolution dans les systèmes de villes : croissance et spécialisation des aires urbaines françaises de 1950 à 2000. Université Paris I, thèse de doctorat.Google Scholar
  22. Pred, A. (1977). City systems in advanced societies. London: Hutchison.Google Scholar
  23. Pumain, D. (1982). La dynamique des villes. Paris: Economica.Google Scholar
  24. Pumain, D. (1997). Vers une théorie évolutive des villes. L’Espace Géographique, 2, 119–134.Google Scholar
  25. Pumain, D. (1998). Urban research and complexity. In C. S. Bertuglia, G. Bianchi, & A. Mela (Eds.), The city and its sciences (pp. 323–362). Heidelberg: Physica Verlag.Google Scholar
  26. Pumain, D. (2000). Settlement systems in the evolution. Geografiska Annaler (Series B), 82(2), 73–87.CrossRefGoogle Scholar
  27. Pumain, D. (2006). Alternative explanations of hierarchical differentiation in urban systems. In D. Pumain (Ed.), Hierarchy in natural and social sciences (Methodos series, Vol. 3, pp. 169–222). Dordrecht: Springer.CrossRefGoogle Scholar
  28. Pumain, D. (2011a). Le contexte en sciences sociales et dans les modèles de simulation en géographie. In J. P. Muller (Ed.), Le contexte dans les modèles de systèmes complexes. Paris: Chemins de Traverse. forthcoming.Google Scholar
  29. Pumain, D. (2011b). Urban systems dynamics, urban growth and scaling laws: The question of ergodicity. In J. Portugali, H. Meyer, E. Stolk, & E. Tan (Eds.), Complexity theories of cities have come of age: An overview with implications to urban planning and design. Heidelberg/Berlin: Springer.Google Scholar
  30. Pumain, D., & Saint-Julien, T. (1979). Les transformations récentes du système urbain français. L’Espace Géographique, 3, 203–211.Google Scholar
  31. Pumain, D., Sanders, L., & Saint-Julien, T. (1989). Villes et auto-organisation. Paris: Economica.Google Scholar
  32. Pumain, D., Bretagnolle, A., & Glisse B. (2006a). Modelling the future of cities. In ECCS’06, Proceedings of the European Conference of Complex systems, University of Oxford, 25–29 Sept 2006.
  33. Pumain, D., Paulus, F., Vacchiani, C., & Lobo, J. (2006b). An evolutionary theory for interpreting urban scaling laws. Cybergeo, 343, 1–20.Google Scholar
  34. Pumain, D., Sanders, L., Bretagnolle, A., Glisse, B., & Mathian, H. (2009). The future of urban systems. In D. Lane, D. Pumain, S. Van der Leeuw, & G. West (Eds.), Complexity perspectives on innovation and social change (Methodos series). Berlin: ISCOM, Springer. chapter 12.Google Scholar
  35. Rey, S. (2011). A grid and GIS-based simulation platform for computational geography. PhD thesis, University Paris I.Google Scholar
  36. Robic, M. C. (1982). Cent ans avant Christaller, une théorie des lieux centraux. L’Espace Géographique, 1, 5–12.Google Scholar
  37. Robson, B. (1973). Urban growth, an approach. London: Methuen.Google Scholar
  38. Rozenblat, C. (2010). Opening the black box of agglomeration economies for measuring cities competitiveness through international firm networks. Urban Studies, 47(13), 2841–2865.CrossRefGoogle Scholar
  39. Rozenblat, C., & Pumain, D. (2007). Firm linkages, innovation and the evolution of urban systems. In P. J. Taylor, B. Derruder, P. Saey, & F. Witlox (Eds.), Cities in globalisation (pp. 130–156). London: Routledge.Google Scholar
  40. Sanders, L. (1992). Systèmes de villes et synergétique. Paris: Anthropos.Google Scholar
  41. Sanders, L., Pumain, D., Mathian, H., Guérin-Pace, F., & Bura, S. (1997). SIMPOP, a multi-agents system for the study of urbanism. Environment and Planning B, 24, 287–305.CrossRefGoogle Scholar
  42. Sanders, L., Favaro, J. M., Glisse, B., Mathian, H., & Pumain, D. (2007). Intelligence artificielle et agents collectives: le modèle Eurosim. Cybergeo, European Journal of Geography, 392, 1–16. Google Scholar
  43. Schmitt, C. (2011). SIMPOPClim: From local to global environmental constraint on urban ­evolution. PhD thesis, University Paris I.Google Scholar
  44. Shearmur, R. (2010). Innovation et développement territorial? L’innovation comme processus (presque) a-territorial. Bulletin de la Société Géographique de Liège, 55, 17–27.Google Scholar
  45. Zelinski W. (1971). The hypothesis of the mobility transition. Geographical review, 61, 219–249.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Institut Universitaire de France, UMR Géographie-citésUniversité Paris IParisFrance

Personalised recommendations