Advertisement

Exploring Demographic and Lot Effects in an ABM/LUCC of Agriculture in the Brazilian Amazon

  • A. Raymond Cabrera
  • Peter Deadman
  • Emilio Moran
  • Eduardo S. Brondízio
  • Leah K. Vanwey
Chapter

Abstract

Building upon previous modelling efforts, an agent-based model of land use change has been developed to model small-scale agriculture in the Brazilian Amazon. The model, LUCITA (Land Use Change in the Amazon), simulates heterogeneous farming household agents during the period of 1970–2000, settling and developing properties west of Altamira, Pará, Brazil. Farming agents, as heuristic agents that satisfy subsistence needs then maximize utility, clear old growth forested areas to pursue agricultural activities. The simulation is utilized here to explore how the development of the household lifecycle is altered when households have access to outside labour resources, and when households settle on previously occupied properties. Simulation results support the assertion that the household lifecycle model alone is insufficient to explain patterns of land use change in these rural frontier-like environments.

Keywords

Land Cover Initial Capital Large Household Deforestation Rate Land Allocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Brondízio, E. S., McCracken, S. D., Moran, E. F., Siqueira, A. D., Nelson, D. R., & Rodriguez-Pedraza, C. (2002). The colonist footprint: Toward a conceptual framework of deforestation trajectories among small farmers in frontier Amazonia. In C. Wood & R. Porro (Eds.), Deforestation and land use in the Amazon. Gainesville: University Press of Florida.Google Scholar
  2. Cabrera, A. R., Deadman, P. J., Brondízio, E. S., & Pinedo-Vasquez, M. (2010). Exploring the choice of decision making method in an agent based model of land use change. In D. Swayne, W. Yang, A. A. Voinov, A. Rizzoli, & T. Filatova (Eds.), Proceedings of the iEMSs fifth biennial meeting: International Congress on Environmental Modelling and Software (iEMSs 2010). Ottawa: International Environmental Modelling and Software Society.Google Scholar
  3. de Sherbinin, A., VanWey, L. K., McSweeney, K., et al. (2008). Rural household micro-demographics, livelihoods and the environment. Global Environmental Change, 18, 38–53. doi: 10.1016/j.gloenvcha.2007.05.005.CrossRefGoogle Scholar
  4. Deadman, P., Robinson, D., Moran, E., & Brondízio, E. (2004). Colonist household decision ­making and land use change in the Amazon Rainforest: An agent-based simulation. Environment and Planning B, 31(5), 693–709. doi: 10.1068/b3098.CrossRefGoogle Scholar
  5. Fearnside, P. M. (1986). Human carrying capacity of the Brazilian rainforest. New York: Columbia University Press.Google Scholar
  6. Goody, J. R. (1958). The development cycle in domestic groups. Cambridge: Cambridge University Press.Google Scholar
  7. Grimm, V., & Railsback, S. F. (2012). Designing, formulating and communicating agent-based models. In A. J. Heppenstall, A. T. Crooks, L. M. See, & M. Batty (Eds.), Agent-based models of geographical systems (pp. 361–377). Dordrecht: Springer.Google Scholar
  8. Grimm, V., Berger, U., Bastiansen, F., et al. (2006). A standard protocol for describing individual-based and agent-based models. Ecological Modelling, 198, 115–126. doi: 10.1016/j.ecolmodel.2006.04.023.CrossRefGoogle Scholar
  9. Grimm, V., Berger, U., DeAngelis, D. L., Polhill, G., Giske, J., & Railsback, S. F. (2010). The ODD protocol: A review and first update. Ecological Modelling, 221, 2760–2768. doi: 10.1016/j.ecolmodel.2010.08.019.CrossRefGoogle Scholar
  10. Hare, M., & Deadman, P. J. (2008). Further towards a taxonomy of agent based simulation models in environmental management. In A. L. Paderes & C. H. Iglesias (Eds.), Agent-based modelling in natural resource management. Valladolid: INSISOC.Google Scholar
  11. Lim, K. S. (2000). Agent-based simulations of land use change in the Amazon. Unpublished master’s thesis, University of Waterloo, Waterloo.Google Scholar
  12. Liu, J., Dietz, T., Carpenter, S. R., et al. (2007a). Complexity of coupled human and natural systems. Science, 317, 1513–1516. doi: 10.1126/science.1144004.CrossRefGoogle Scholar
  13. Liu, J., Dietz, T., Carpenter, S. R., et al. (2007b). Coupled human and natural systems. Ambio, 36, 639–649.CrossRefGoogle Scholar
  14. Lu, D., Moran, E., & Mausel, P. (2002). Linking Amazonian secondary succession forest growth to soil properties. Land Degradation and Development, 13, 331–343. doi: 10.1002/ldr.516.CrossRefGoogle Scholar
  15. Mausel, P., Wu, Y., Li, Y., Moran, E. F., & Brondízio, E. S. (1993). Spectral identification of successional stages following deforestation in the Amazon. Geocarto International, 4, 61–71.CrossRefGoogle Scholar
  16. McCracken, S. D., Brondízio, E. S., Nelson, D., Moran, E. F., Siqueira, A. D., & Rodriguez-Pedraza, C. (1999). Remote sensing and GIS at farm property level: Demography and deforestation in the Brazilian Amazon. Photogrammetric Engineering and Remote Sensing, 65, 1311–1320.Google Scholar
  17. McCracken, S. D., Siqueira, A. D., Moran, E. F., & Brondízio, E. S. (2002). Land use patterns on an agricultural frontier in Brazil; insights and examples from a demographic perspective. In C. H. Wood & R. Porro (Eds.), Land use and deforestation in the Amazon. Gainesville: University Press Florida.Google Scholar
  18. Messina, J. P., Evans, T. P., Manson, S. M., Shortridge, A. M., Deadman, P. J., & Verburg, P. H. (2008). Complex systems models and the management of error and uncertainty. Journal of Land Use Science, 3, 11–25. doi: 10.1080/17474230802047989.CrossRefGoogle Scholar
  19. Moran, E. F. (1981). Developing the Amazon. Bloomington: Indiana University Press.Google Scholar
  20. Moran, E. F. (1995). Socio-economic aspects of acid soil management. In R. A. Date (Ed.), Plant soil interactions at low pH. Dordrecht: Kluwer Academic.Google Scholar
  21. Moran, E. F., Brondízio, E., Mausel, P., & Wu, Y. (1994). Integrating Amazonian vegetation, land use, and satellite data. BioScience, 44, 329–338. doi: 10.1016/j.foreco.2005.04.004.CrossRefGoogle Scholar
  22. Moran, E. F., Brondízio, E. S., Tucker, J. M., da Silva-Forsberg, M. C., McCracken, S., & Falesi, I. (2000). Effects of soil fertility and land use on forest succession in Amazonia. Forest Ecology and Management, 139, 93–108. doi: 10.1016/S0378-1127(99)00337-0.CrossRefGoogle Scholar
  23. Moran, E. F., Brondízio, E. S., & McCracken, S. (2002). Trajectories of land use: Soils, succession, and crop choice. In C. H. Wood & R. Porro (Eds.), Land use and deforestation in the Amazon. Gainesville: University Press Florida.Google Scholar
  24. Parker, D. C., Berger, T., Manson, S. M. (2002). Agent-based models of land-use/land-cover change: Report and review of an international workshop. Bloomington: LUCC Focus 1 Publication 6. http://www.indiana.edu/~act/focus1/FinalABM11.7.02.pdf
  25. Parker, D. C., Manson, S. M., Janssen, M. A., Hoffmann, M. J., & Deadman, P. (2003). Multi-agent systems for the simulation of land-use and land-cover change: A review. Annals of the Association of American Geographers, 93(2), 314–337.CrossRefGoogle Scholar
  26. Parker, D. C., Brown, D. G., Polhill, J. G., Deadman, P. J., & Manson, S. M. (2008a). Illustrating a new ’conceptual design pattern’ for agent-based models of land use via five case studies – the MR POTATOHEAD framework. In A. L. Paderes & C. H. Iglesias (Eds.), Agent-based modelling in natural resource management. Valladolid: INSISOC.Google Scholar
  27. Parker, D. C., Entwisle, B., Rindfuss, R., et al. (2008b). Case studies, cross-site comparisons, and the challenge of generalization: Comparing agent-based models of land use change in frontier regions. Journal of Land Use Science, 3, 41–72. doi: 10.1080/17474230802048151.CrossRefGoogle Scholar
  28. Rindfuss, R. R., Entwisle, B., Walsh, S. J., et al. (2008). Land use change: Complexity and comparisons. Journal of Land Use Science, 3, 1–10. doi: 10.1080/17474230802047955.CrossRefGoogle Scholar
  29. Robinson, D. T. (2003). Modelling farmer household decision-making and its effects on land use/cover change in the Altamira region, Para, Brazil. Unpublished master’s thesis, University of Waterloo, Waterloo.Google Scholar
  30. VanWey, L. K., D’Antona, Á. O., & Brondízio, E. S. (2007). Household demographic change and land use/land cover change in the Brazilian Amazon. Population and Environment, 28, 163–185. doi: 10.1007/s11111-007-0040-y.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • A. Raymond Cabrera
    • 1
  • Peter Deadman
    • 1
  • Emilio Moran
    • 3
  • Eduardo S. Brondízio
    • 3
  • Leah K. Vanwey
    • 2
  1. 1.Department of Geography and Environmental ManagementUniversity of WaterlooWaterlooCanada
  2. 2.Department of SociologyBrown UniversityProvidenceUSA
  3. 3.Anthropological Center for Training and Research on Global Environmental Change, Department of AnthropologyIndiana UniversityBloomingtonUSA

Personalised recommendations