Evaluation of Presented Forecasts of European Migration

  • Jakub Bijak
Part of the The Springer Series on Demographic Methods and Population Analysis book series (PSDE, volume 24)


The current chapter focuses on two aspects of evaluating the forecasts of migration flows, presented earlier in Chapters 5, 6 and 7. Firstly, Section 8.1 deals with the sensitivity of the results to changes in the assumed prior distributions and in the information they carry. The focus of the discussion is on the precision parameters of the assumed random processes. Secondly, in Section 8.2, selected Bayesian forecasts are compared with their frequentist counterparts in terms of errors ex ante and ex post, in the latter case computed for forecasts for 2000–2007 calculated on the basis of series truncated in 1999.


Mean Absolute Percentage Error Predictive Distribution Migration Flow Random Walk Model Emigration Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Albert, J. (2007). Bayesian computation with R. ‘Use R!’ series, Berlin-Heidelberg: Springer.Google Scholar
  2. Anderson, T. W. (2003). An introduction to multivariate statistical analysis (3rd ed.). New York: Wiley.Google Scholar
  3. Bernardo, J. M., & Smith, A. F. M. (2000). Bayesian theory. Chichester: Wiley.Google Scholar
  4. Bijak, J. (2008b). Prognozowanie migracji zagranicznych w Europie: podejście bayesowskie [Forecasting international migration in Europe: The Bayesian approach]. In A. Welfe (Ed.), Metody ilościowe w naukach ekonomicznych [Quantitative methods in economics] (Vol. 8, pp. 77–98). Warsaw: Warsaw School of Economics.Google Scholar
  5. Cohen, J. E. (1986). Population forecasts and confidence intervals for Sweden: A comparison of model-based and empirical approaches. Demography, 23(1), 105–126.CrossRefGoogle Scholar
  6. Congdon, P. (2003). Applied Bayesian modelling. Chichester: Wiley.CrossRefGoogle Scholar
  7. Fisher, R. A. (1922). On the mathematical foundations of theoretical statistics. Philosophical Transactions of the Royal Society A, 222, 309–368 (Accessed via the University of Adelaide R. A. Fisher Digital Archive,, as of 5 Feb 2008).CrossRefGoogle Scholar
  8. Greene, W. H. (2000). Econometric analysis. Upper Saddle River, NJ: Prentice Hall.Google Scholar
  9. Jeffreys, H. (1939). Theory of probability. Oxford, MA: Oxford University Press [(1961). 3rd ed.].Google Scholar
  10. Jóźwiak, J. (1987). On the problem of the accuracy of population projections. Manuscript. Published in Polish as: (1988). Problem oceny dokładności projekcji demograficznych. Studia Demograficzne, 92(2), 59–74.Google Scholar
  11. Keilman, N., & Pham, D. Q. (2006). Prediction intervals for Lee-Carter-based mortality forecasts. Paper for the European Population Conference, Liverpool, 21–24 June.Google Scholar
  12. Kim, H.-M., & Mallick, B. K. (2003). A note on Bayesian spatial prediction using the elliptical distribution. Statistics and Probability Letters, 64(1), 271–276.CrossRefGoogle Scholar
  13. Lynch, S. M. (2007). Introduction to applied Bayesian statistics and estimation for social scientists. New York: Springer.CrossRefGoogle Scholar
  14. Męczarski, M. (1998). Problemy odporności w bayesowskiej analizie statystycznej [Robustness issues in Bayesian statistical analysis]. “Monografie i opracowania” no. 446, Warsaw School of Economics, Warsaw.Google Scholar
  15. Osiewalski, J., & Steel, M. F. J. (1993b). Robust Bayesian inference in elliptical regression models. Journal of Econometrics, 57(1–3), 345–363.CrossRefGoogle Scholar
  16. Osiewalski, J., & Steel, M. F. J. (1993c). Bayesian marginal equivalence of elliptical regression models. Journal of Econometrics, 59(3), 391–403.CrossRefGoogle Scholar
  17. Poirier, D. J., & Tobias, J. L. (2004). Bayesian econometrics. Manuscript. University of California, Irvine, CA, and Iowa State University, Ames, IA; Accessed on 14 Dec 2007 [later published in, Mills, T. C., & Patterson, K. (Eds.). (2006), Palgrave Handbook of Econometrics, Volume 1: Econometric Theory (pp. 841–870). Basingstoke, UK: Palgrave Macmillan].Google Scholar
  18. Smith, S. K., & Sincich, T. (1992). Evaluating the forecast accuracy and bias of alternative population projections for states. International Journal of Forecasting, 8(3), 495–508.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.School of Social Sciences, Centre for Population Change and S3RI, University of SouthamptonSouthamptonUK

Personalised recommendations