Advertisement

Forecasting Migration: Selected Models and Methods

  • Jakub Bijak
Chapter
Part of the The Springer Series on Demographic Methods and Population Analysis book series (PSDE, volume 24)

Abstract

In the current chapter, a survey of various models and methods used in migration predictions to date is offered. The rationale is that socio-economic predictions can be based not only on general, well-grounded laws and theories, but also on descriptive models designed to suit specific research questions. The presented overview follows a distinction between deterministic and probabilistic approaches, presented respectively in Sections 4.1 and 4.2, depending on the way the uncertainty issue is treated. The presented models and methods are finally compared and evaluated from the point of view of their usefulness for the purpose of the current and possible future studies.

Keywords

Markov Chain Forecast Error International Migration Interregional Migration Population Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alecke, B., Huber, P., & Untiedt, G. (2001). What difference a constant makes? How predictable are international migration flows? In Migration policies and EU enlargement. The case of central and eastern Europe (pp. 63–78) Paris: OECD.Google Scholar
  2. Alho, J. (1998). A stochastic forecast of the population of Finland. Reviews 1998/4. Helsinki: Statistics Finland.Google Scholar
  3. Alho, J. (1999). On probabilistic forecasts of population and their uses. Paper for the 52nd session of the international statistical institute, Helsinki, 10–18 August.Google Scholar
  4. Alho, J., Alders, M., Cruijsen, H., Keilman, N., & Nikander, T. (2005). New forecast: Population decline postponed in Europe. Paper for the joint UNECE-eurostat work session on demographic projections, Vienna, 21–23 September.Google Scholar
  5. Alho, J., & Spencer, B. (2005). Statistical demography and forecasting. Berlin-Heidelberg: Springer.Google Scholar
  6. Alvarez-Plata, P., Brücker, H., & Siliverstovs, B. (2003). Potential migration from central and eastern Europe into the EU-15 – An update. Report for the EC DG of employment and social affairs. Deutsches Institut für Wirtschaftsforschung, Berlin.Google Scholar
  7. Armstrong, J. S., & Green, K. C. (2007). Methodology tree. In J. S. Armstrong & K. C. Green (Eds.), Forecasting principles (online resource), Philadelphia: Marketing Department of The Wharton School, University of Pennsylvania; http://www.forecastingprinciples.com/methodologytree.html (version from Nov 2007).Google Scholar
  8. Barrell, R., Gottschalk, S., Kirby, S., & Orazgani, A. (2009). Projections of migration inflows under alternative scenarios for the UK and world economies (Economics Paper No. 3). Department for Communities and Local Government, London.Google Scholar
  9. Barro, R. J., & Sala-i-Martin, X. (1995). Economic growth. New York: McGraw-Hill.Google Scholar
  10. Bauer, T., & Zimmermann, K. F. (1999). Assessment of possible migration pressure and its labour market impact following EU following EU enlargement to central and eastern Europe. IZA Research Report 3. Institut zur Zukunft der Arbeit, Bonn.Google Scholar
  11. Baum, L. E., & Petrie, T. (1966). Statistical inference for probabilistic functions of finite state Markov chains. The Annals of Mathematical Statistics, 37(6), 1554–1563.Google Scholar
  12. Bernardelli, H. (1941). Population waves. Journal of the Burma Research Society, 31, 1–18.Google Scholar
  13. Bernardo, J. M., & Muñoz, J. (1993). Bayesian analysis of population evolution. The Statistician, 42(4), 541–550.Google Scholar
  14. Berzuini, C., Clayton, D., & Bernardinelli, L. (1993). Bayesian inference on the lexis diagram. Bulletin of the International Statistical Institute, 55(1), 149–165.Google Scholar
  15. Bijak, J. (2008a). Bayesian methods in international migration forecasting. In J. Raymer & F. Willekens (Eds.), Estimation of international migration in Europe: Issues, models and assessment (pp. 255–281). Chichester: Wiley.Google Scholar
  16. Bijak, J., Kupiszewska, D., Kupiszewski, M., Saczuk, K., & Kicinger, A. (2007). Population and labour force projections for 27 European countries, 2002–2052: Impact of international migration on population ageing. European Journal of Population, 23(1), 1–31.Google Scholar
  17. Bijak, J., & Wiśniowski, A. (2010). Bayesian forecasting of immigration to selected European countries by using expert knowledge. Journal of the Royal Statistical Society A, 173(4), 775–796.Google Scholar
  18. Blumen, I., Kogan, M., & McCarthy, P. J. (1955). The industrial mobility of labour as a probability process. Ithaca, NY: Cornell University Press.Google Scholar
  19. Boeri, T., & Brücker, H. (2001). Eastern enlargement and EU labour markets: Perceptions, challenges and opportunities (IZA Discussion Paper 256). Institut zur Zukunft der Arbeit, Bonn.Google Scholar
  20. Box, G. E. P., & Jenkins, G. M. (1976). Time series analysis: Forecasting and control. San Francisco: Holden-Day.Google Scholar
  21. Brown, L. A. (1970). On the use of Markov chains in movement research. Economic Geography, 46(Suppl.), 393–403.Google Scholar
  22. Brücker, H., & Siliverstovs, B. (2006). On the estimation and forecasting of international migration: How relevant is heterogeneity across countries. Empirical Economics, 31(3), 735–754.Google Scholar
  23. Charemza, W. W., & Deadman, D. F. (1992). New directions in econometric practice. Aldershot: Edward Elgar [(1997). Nowa ekonometria. Warszawa: PWE].Google Scholar
  24. Chojnicki, Z. (1977). Podstawy metodologiczne prognozowania w geografii ekonomicznej [Methodological foundations of forecasting in economic geography]. Przegląd Geograficzny, 49(2), 247–261. [A similar, earlier paper in English is available as: Chojnicki, Z. (1970). Prediction in economic geography. Economic Geography, 46(2 Suppl.), 213–222.]Google Scholar
  25. Clark, J. S. (2003). Uncertainty and variability in demography and population growth: A hierarchical approach. Ecology, 84(6), 1370–1381.Google Scholar
  26. Cohen, J. E. (1998). Should population projections consider “limiting factors” – And if so, how? Population and Development Review, 24(Suppl.), 118–138.Google Scholar
  27. Cohen, J. E., Roig, M., Reuman D. C., & GoGwilt, C. (2008). International migration beyond gravity: A statistical model for use in population projections. Proceedings of the National Academy of Sciences USA, 105(40), 15268–15274.Google Scholar
  28. Congdon, P. (2000). A Bayesian approach to prediction using the gravity model, with an application to patient flow modelling. Geographical Analysis, 32(3), 205–224.Google Scholar
  29. Congdon, P. (2001b). The development of gravity models for hospital patient flows under system change: A Bayesian modelling approach. Health Care Management Science, 4(4), 289–304.Google Scholar
  30. Constant, A., & Zimmermann, K. F. (2003). The dynamics of repeat migration: A Markov chain analysis (IZA Discussion Paper 885). Institut zur Zukunft der Arbeit, Bonn.Google Scholar
  31. Courbis, R. (1979). The REGINA model, a regional-national model for French planning. Regional Science and Urban Economics, 9(2–3), 117–139.Google Scholar
  32. Courgeau, D. (1985). Interaction between spatial mobility, family and career life cycle: A French survey. European Sociological Review, 1(2), 139–162.Google Scholar
  33. Courgeau, D. (1995). Migration theories and behavioural models. International Journal of Population Geography, 1(1), 19–27.Google Scholar
  34. Courgeau, D. (2003). From the macro-micro opposition to multilevel analysis. In D. Courgeau (Ed.), Methodology and epistemology of multilevel analysis (pp. 43–92). Dordrecht : Kluwer.Google Scholar
  35. Courgeau, D. (2004). Probabilités, demographie et sciences sociales. Mathématiques et Sciences humaines, 42(3), 27–50.Google Scholar
  36. Courgeau, D., & Baccaïni, B. (1998). Multilevel analysis in the social sciences. Population–E, 10(1), 39–71.Google Scholar
  37. Courgeau, D., & Lelièvre, E. (1992). Event history analysis in demography. Oxford: Oxford University Press.Google Scholar
  38. Cruijsen, H., & Keilman, N. (1992). A comparative analysis of the forecasting process. In N. Keilman & H. Cruijsen (Eds.), National population forecasting in industrialised countries. NIDI & CBGS publication 24 (pp. 3–25). Amsterdam: Swets & Zeitlinger.Google Scholar
  39. Dalkey, N. C. (1969). The Delphi method: An experimental study of group opinion. Research Memorandum RM-5888-PR. Santa Monica, CA: RAND Corporation.Google Scholar
  40. de Beer, J. (1997). The effect of uncertainty of migration on national population forecasts: The case of the Netherlands. Journal of Official Statistics, 13(3), 227–243.Google Scholar
  41. de Beer, J. (2008). Forecasting international migration: Time series projections vs argument-based forecasts. In J. Raymer & F. Willekens (Eds.), Estimation of international migration in Europe: Issues, models and assessment (pp. 283–306). Chichester: Wiley.Google Scholar
  42. Draper, D. (1995). Inference and hierarchical modelling in the social sciences. Journal of Educational and Behavioral Statistics, 20(2), 115–147, 233–239 (with discussion).Google Scholar
  43. Drbohlav, D. (1996). The probable future of European east-west international migration – Selected aspects. In F. W. Carter, P. Jordan, & V. Rey (Eds.), Central Europe after the fall of the iron curtain; geopolitical perspectives, spatial patterns and trends (pp. 269–296). Frankfurt: Wiener Osteuropa Studien 4. Peter Lang & Co.Google Scholar
  44. Dustmann, C., Casanova, M., Fertig, M., Preston, I., & Schmidt, C. M. (2003). The impact of EU enlargement on migration flows. Home Office Report 25/03. London: Home Office.Google Scholar
  45. Eurostat (2005). Population projections for the European Union 2004–2050. Luxembourg: Eurostat.Google Scholar
  46. Fachin, S., & Venanzoni, G. (2002). IDEM: An integrated demographic and economic model of Italy. Paper for the 14th International Conference on Input-Output Techniques, Montreal, Canada, 10–15 Oct.Google Scholar
  47. Fassmann, H., & Hintermann, C. (1997). Migrationspotential ostmitteleuropa. ISR-Forschungs-berichte 15. Institut für Stadt- und Regionalforschung, Wien.Google Scholar
  48. Fertig, M., & Schmidt, C. M. (2000). Aggregate-level migration studies as a tool for forecasting future migration streams (IZA Discussion paper 183). Institut zur Zukunft der Arbeit, Bonn.Google Scholar
  49. Franzmeyer, F., & Brücker, H. (1997). Europäische Union: Osterweiterung und Arbeitskräft-emigration. DIW Wochenbericht 5/97 (pp. 89–96). Deutsches Institut für Wirtschaftsforschung, Berlin.Google Scholar
  50. Ginsberg, R. B. (1971). Semi-Markov processes and mobility. Journal of Mathematical Sociology, 1(1), 233–262.Google Scholar
  51. Ginsberg, R. B. (1978). Probability models of residence histories: Analysis of times between moves. In W. A. V. Clark, & E. G. Moore (Eds.), Population mobility and residential change. Studies in Geography 25. Evanston, IL: Northwestern University.Google Scholar
  52. Girosi, F., & King, G. (2008). Demographic forecasting. Princeton, NJ: Princeton University Press.Google Scholar
  53. Goldstein, H. (2003). Multilevel statistical models. London: Arnold.Google Scholar
  54. Goodman, L. A. (1961). Statistical methods for the mover-stayer model. Journal of the American Statistical Association, 56(296), 841–868.Google Scholar
  55. Gorbey, S., James, D., & Poot, J. (1999). Population forecasting with endogenous migration: An application to trans-tasman migration. International Regional Science Review, 22(1), 69–101.Google Scholar
  56. Greene, W. H. (2000). Econometric analysis. Upper Saddle River, NJ: Prentice Hall.Google Scholar
  57. Greenwood, M. J. (1973). Urban economic growth and migration: Their interaction. Environment and Planning A, 5(1), 91–112.Google Scholar
  58. Gustafson, P., Aeschliman, D., & Levy, A. R. (2003). A simple approach to fitting Bayesian survival models. Lifetime Data Analysis, 9(1), 5–19.Google Scholar
  59. Hägerstrand, T. (1957). Migration and area. Survey of a sample of Swedish migration fields and hypothetical considerations on their genesis. In D. Hannerberg, T. Hägerstrand, & B. Odeving (Eds.), Migration in Sweden. A Symposium. “Lund Studies in Geography”, Series B, no. 13 (pp. 27–158). Lund: Gleerup.Google Scholar
  60. Hägerstrand, T. (1970). What about people in regional science? Papers of the Regional Science Association, 24(1), 7–21.Google Scholar
  61. Hatton, T. J., & Williamson, J. G. (1998). The age of mass migration: Causes and economic impact. Oxford, MA: Oxford University Press.Google Scholar
  62. Huff, J. O., & Clark, W. A. V. (1978). The role of stationarity in Markov and opportunity models of intraurban migration. In W. A. V. Clark & E. G. Moore (Eds.), Population mobility and residential change. Studies in Geography 25, Evanston, IL: Northwestern University.Google Scholar
  63. Ibrahim, J. G., Chen, M.-H., & Sinha, D. (2001). Bayesian survival analysis. Berlin-Heidelberg: Springer.Google Scholar
  64. Jennissen, R. (2004). Macro-economic determinants of international migration in Europe. Amsterdam: Dutch University Press.Google Scholar
  65. Joseph, G. (1975). A Markov analysis of age/sex differences in inter-regional migration in Britain. Regional Studies, 9(2), 69–78.Google Scholar
  66. Jóźwiak, J. (1992). Mathematical models of population. NIDI Report 26. Netherlands Interdisciplinary Demographic Institute, The Hague.Google Scholar
  67. Kaczmarczyk, P., & Okólski, M. (2008). Demographic and labour-market impacts of migration on Poland. Oxford Review of Economic Policy, 24(3), 599–624.Google Scholar
  68. Keilman, N., & Cruijsen, H. (Eds.). (1992). National population forecasting in industrialised countries. NIDI & CBGS publication 24. Amsterdam: Swets & Zeitlinger.Google Scholar
  69. Keilman, N., & Pham, D. Q. (2004b). Empirical errors and predicted errors in fertility, mortality and migration forecasts in the European Economic Area (Discussion Paper No. 386). Social and Demographic Research, Statistics Norway, Oslo.Google Scholar
  70. Keilman, N., Pham, D. Q., & Hetland, A. (2001). Norway’s uncertain demographic future. Norway, Oslo: Statistics.Google Scholar
  71. Keyfitz, N. (1968). Introduction to the mathematics of population. Berkeley, CA: University of California Press.Google Scholar
  72. Keyfitz, N. (1981). The limits of population forecasting. Population and Development Review, 7(4), 579–593.Google Scholar
  73. Keyfitz, N. (1982). Can knowledge improve forecasts? Population and Development Review, 8(4), 729–751.Google Scholar
  74. Korčak-Čepurkivs’kij, Ju. A. (1970). Rozrachunok tempu zrastanja kilkosti i vikovoho skladu tych, ščo živut’ u ustabilizovanomu naselenni z postijnym rivnem mihracij. Demohrafična Doslidžennija, 1, 24–41.Google Scholar
  75. Kulu, H. (2005). Migration and fertility: Competing hypotheses re-examined. European Journal of Population, 21(1), 51–87.Google Scholar
  76. Kupiszewska, D., & Kupiszewski, M. (2005). A revision of a traditional multiregional model to better capture international migration: The MULTIPOLES model and its applications (CEFMR Working Paper 10/2005). Central European Forum for Migration Research, Warsaw.Google Scholar
  77. Kupiszewski, M. (1998). Czy na podstawie doświadczeń innych krajów można przewidywać zmiany migracji międzynarodowych po przyjęciu Polski do Unii Europejskiej? [Can the experience of other countries help forecast international migration changes after Poland’s accession to the EU?]. In P. Korcelli (Ed.), Przemiany w zakresie migracji ludności jako konsekwencja przystąpienia Polski do Unii Europejskiej [Changes in migration as a consequence of Poland’s accession to the European Union] (pp. 67–78). Warsaw: Bulletin of the Committee of Spatial Organization of the Polish Academy of Sciences, no. 184.Google Scholar
  78. Kupiszewski, M. (2001). Demograficzne aspekty wybranych prognoz migracji zagranicznych [Demographic aspects of selected forecasts of international migration]. In A. Stępniak (Ed.), Swobodny przepływ pracowników w kontekście wejścia Polski do Unii Europejskiej [Free flow of workers in the context of Poland’s accession to the European Union] (pp. 73–98). Warsaw: Office of the Committee of European Integration.Google Scholar
  79. Kupiszewski, M. (2002a). How trustworthy are forecasts of international migration between Poland and the European Union? Journal of Ethnic and Migration Studies, 28(4), 627–645.Google Scholar
  80. Kupiszewski, M. (2002b). Modelowanie dynamiki przemian ludności w warunkach wzrostu znaczenia migracji międzynarodowych [The role of international migration in the modelling of population dynamics]. Warsaw: Institute of Geography and Spatial Organisation, Polish Academy of Sciences.Google Scholar
  81. Lanzieri, G. (2004). EUROPOP 2003: Methodology for drafting international migration assumptions in the EU-15 member states. Paper for the meeting of the Working Group on Population Projections, Luxembourg, 15–16 July.Google Scholar
  82. Lawrence, M., Goodwin, P., O’Connor, M., & Önkal, D. (2006). Judgemental forecasting: A review of progress over the last 25 years. International Journal of Forecasting, 22(3), 493–518.Google Scholar
  83. Layard, R., Blanchard, O., Dornbusch, R., & Krugman, P. (1992). East-West migration: The alternatives. Cambridge, MA: MIT Press.Google Scholar
  84. Lee, R. D. (1998). Probabilistic approaches to population forecasting. Population and Development Review, 24(Suppl.), 156–190.Google Scholar
  85. Leslie, P. H. (1945). On the use of matrices in certain population mathematics. Biometrika, 33(3), 183–212.Google Scholar
  86. Lindsay, J., & Barr, B. M. (1972). Two stochastic approaches to migration: Comparison of Monte Carlo simulation and Markov chain models. Geografiska Annaler B, 54(1), 56–67.Google Scholar
  87. Litterman, R. B. (1979). Techniques of forecasting using vector autoregressions (Working Paper No. 115). Federal Reserve Bank of Minneapolis, Minneapolis, MN.Google Scholar
  88. Lutz, W., Saariluoma, P., Sanderson, W., & Scherbov, S. (2000). New developments in the methodology of expert- and argument-based probabilistic population forecasting. IIASA Interim Report IR-00-20. International Institute for Applied Systems Analysis, Laxenburg.Google Scholar
  89. Lutz, W., Sanderson, W., & Scherbov, S. (1996). Probabilistic population projections based on expert opinion. In W. Lutz (Ed.), The future population of the World. What can we assume today? (pp. 397–428). London: Earthscan.Google Scholar
  90. Lutz, W., Sanderson, W. C., & Scherbov, S. (1998). Expert based probabilistic population projections. Population and Development Review, 24(Suppl.), 139–155.Google Scholar
  91. Lutz, W., Sanderson, W. C., & Scherbov, S. (Eds.). (2004). The end of world population growth in the 21st century: New challenges for human capital formation and sustainable development. London: Earthscan.Google Scholar
  92. Makridakis, S, & Hibon, M. (2000). The M3-competition: Results, conclusions and implications. International Journal of Forecasting, 16(4), 451–476.Google Scholar
  93. Markov, A. A. (1906). Rasprostranenie zakona bol’ših čisel na veličiny, zavisjaščie drug ot druga [Extension of the law of large numbers to dependent variables]. Izvestija Fiziko-matematičeskogo obščestva pri Kazanskom universitete, II Series, 15, 135–156.Google Scholar
  94. Massey, D. S. (1987). The ethnosurvey in theory and practice. International Migration Review, 21(4), 1498–1522.Google Scholar
  95. Massey, D. S., & Zenteno, R. M. (1999). The dynamics of mass migration. Proceedings of the National Academy of Sciences USA, 96(9), 5328–5335.Google Scholar
  96. McGinnis, R., Myers, G. C., & Pilger, J. (1963). Internal migration as a stochastic process. Paper for the 34th session of the International Statistical Institute, Ottawa, 21–29 August.Google Scholar
  97. Mulder, C. H. (1993). Migration dynamics: A life course approach. Amsterdam: Thesis Publishers.Google Scholar
  98. Nakamura, T. (1986). Bayesian cohort models for general cohort table analyses. Annals of the Institute of Statistical Mathematics, 38, 353–370.Google Scholar
  99. Okun, B. (1968). Interstate population migration and state income inequality: A simultaneous equation approach. Economic Development and Cultural Change, 16(2), 297–313.Google Scholar
  100. Orłowski, W. (2000). Migration from central and eastern European countries after the accession: Effects for regions, labour markets, and social security systems. Research Bulletin, 2(9), 7–21. Central Statistical Office, Warsaw.Google Scholar
  101. Orrell, D. (2007). The future of everything. The science of prediction. New York: Thunder’s Mouth Press.Google Scholar
  102. Paradysz, J. (2004). Marek Kupiszewski – Modelowanie dynamiki przemian ludności w warunkach wzrostu znaczenia migracji międzynarodowych, Wydawnictwo PAN, IGiPZ, Prace Geograficzne nr 181, Warszawa, 2002, ss. 174 (A review). Studia Demograficzne, 145(1), 129–133.Google Scholar
  103. Paradysz, J. (2006). Migracje ludności [Population migration]. In M. Kędelski & J. Paradysz (Eds.), Demografia [Demography] (pp. 231–254). Poznań: Poznań University of Economics.Google Scholar
  104. Petty, W. (1682). An essay concerning the multiplication of mankind, together with another essay in political arithmetick concerning the growth of the City of London with the causes and consequences thereof. London. Reprinted within the framework of the Gutenberg Project, http://www.gutenberg.org/etext/5619. Accessed on 15 March 2006.
  105. Plane, D. A. (1993). Demographic influences on migration. Regional Studies, 27(4), 375–383.Google Scholar
  106. Plane, D. A., & Rogerson, P. A. (1985). Economic-demographic models for forecasting interregional migration. Environment and Planning A, 17(2), 185–198.Google Scholar
  107. Prais, S. J. (1955). Measuring social mobility. Journal of the Royal Statistical Society A, 118, 56–66.Google Scholar
  108. Rees, P. H. (1996). Projecting national and regional populations of the European Union using the migration information. In P. H. Rees, J. S. C. Stillwell, A. Convey, & M. Kupiszewski (Eds.), Population migration in the European Union (pp. 330–364). Chichester: Wiley.Google Scholar
  109. Rees, P. H., Stillwell, J. S. C., & Convey, A. (1992). Intra-community migration and its impact on the development of the demographic structure at regional level (Working Paper 92/1). School of Geography, University of Leeds, Leeds.Google Scholar
  110. Rees, P. H., & Willekens, F. (1986). Data and accounts. In A. Rogers & F. Willekens (Eds.), Migration and settlement. A multiregional comparative study (pp. 15–59). Dordrecht: Reidel.Google Scholar
  111. Rees, P. H., and Wilson, A. G. (1973). Accounts and models for spatial demographic analysis 1: Aggregate population. Environment and Planning A, 5(1): 61–90.Google Scholar
  112. Rogers, A. (1966). A Markovian policy model of interregional migration. Papers of the Regional Science Association, 17, 205–224.Google Scholar
  113. Rogers, A. (1975). Introduction to multiregional mathematical demography. New York: Wiley.Google Scholar
  114. Rogers, A. (1980). Introduction to multistate mathematical demography. Environment and Planning A, 12(5), 489–498.Google Scholar
  115. Rogerson, P. A. (1984). New directions in the modelling of interregional migration. Economic Geography, 60(2), 111–121.Google Scholar
  116. Salt, J., & Singleton, A. (1995). Analysis and forecasting of international migration by major groups. Report to the Working Party on Demographic Projections. Eurostat, Luxembourg.Google Scholar
  117. Schmid, V., & Knorr-Held, L. (2001). BAMP: Bayesian age-period-cohort modelling and prediction. software documentation. Department of Statistics, Ludwig-Maximilian-University, Munich.Google Scholar
  118. Sims, C. A. (1980). Macroeconomics and Reality. Econometrica, 48(1), 1–48.Google Scholar
  119. Sinn, H.-W., Flaig, G., Werding, M., Munz, S., Duell, N., & Hofmann, H. (2001). EU-Erweiterung und Arbeitskräftemigration, Wege zu einer schrittweisen Annäherung der Arbeitsmärkte. IFO-Institut für Wirtschaftsforschung, München.Google Scholar
  120. Spilerman, S. (1972). The analysis of mobility process by the introduction of independent variables into a Markov chain. American Sociological Review, 37(3), 277–294.Google Scholar
  121. Stillwell, J. C. H., & Congdon, P. (Eds.) (1991). Migration models: Macro and micro approaches. London: Belhaven Press.Google Scholar
  122. Törnqvist, L. (1949). Näkökohdat, jotka ovat määränneet primääristen prognoosiolettamusten valinnan [Points of view that have determined the primary forecast assumptions]. In J. Hyppölä, A. Tunkelo, & L. Törnqvist (Eds.), Suomen väestöä, sen uusiutumista ja tulevaa kehitystä koskevia laskelmia [Calculations concerning the population of Finland, its renewal and future development]. Tilastollisia tiedonantoja 38. Statistics Finland, Helsinki.Google Scholar
  123. Tuljapurkar, S. (1997). Demography. Taking the measure of uncertainty. Nature, 387(6635), 760–761.Google Scholar
  124. Tuljapurkar, S., & Boe, C. (1999). Validation, probability-weighted priors and information in stochastic forecasts. International Journal of Forecasting, 15(3), 259–271.Google Scholar
  125. Tuljapurkar, S., Lee, R. D., & Li, Q. (2004). Random scenario forecasts versus stochastic forecasts. International Statistical Review, 72(2), 185–199.Google Scholar
  126. van der Gaag, N., de Beer, J., & Willekens, F. (2005). MicMac. Combining micro and macro approaches in demographic forecasting. Paper for the Joint UNECE-Eurostat Work Session on Demographic Projections, Vienna, 21–23 Sep.Google Scholar
  127. van Imhoff, E. (1990). The exponential multidimensional demographic projection model. Mathematical Population Studies, 2(3), 171–182.Google Scholar
  128. van Imhoff, E., & Keilman, N. (1991). LIPRO 2.0: An application of a dynamic demographic projection model to household structure in The Netherlands. NIDI & CBGS Publication 23. Swets & Zeitlinger, Amsterdam.Google Scholar
  129. van Imhoff, E., & Post, W. (1998). Microsimulation methods for population projection. Population–E, 10(1), 97–138.Google Scholar
  130. Vishnevsky, A., & Zayonchkovskaya, Zh. [Višnevskij, A. G., & Zajončkovskaja, Ž. A.] (1994). Emigration from the former Soviet Union: The fourth wave. In H. Fassmann & R. Münz (Eds.), European migration in the late twentieth century: Historical patterns, actual trends and social implications (pp. 239–259). Aldershot: Edward Elgar.Google Scholar
  131. Wegren, S., & Cooper Drury, A. (2001). Patterns of internal migration during the Russian transition. Journal of Communist Studies and Transition Politics, 17(4), 15–42.Google Scholar
  132. Weidlich, W., & Haag, G. (Eds.). (1988). Interregional migration: Dynamic theory and comparative analysis. Berlin-Heidelberg: Springer.Google Scholar
  133. Willekens, F. (1994). Monitoring international migration flows in Europe. Towards a statistical data base combining data from different sources. European Journal of Population, 10(1), 1–42.Google Scholar
  134. Willekens, F. (1995). Multiregional demographic forecasting (Population Research Centre Working Paper 95-1), University of Groningen, Groningen.Google Scholar
  135. Willekens, F. (2008). Models of migration: Observations and judgments. In J. Raymer & F. Willekens (Eds.), Estimation of international migration in Europe: Issues, models and assessment (pp. 117–148). Chichester: Wiley.Google Scholar
  136. Willekens, F., & Baydar, N. (1986). Forecasting place-to-place migration with generalized linear models. In R. Woods & P. H. Rees (Eds.), Population structures and models (pp. 203–244). London: Allen and Unwin.Google Scholar
  137. Wilson, G. A., & Rannala, B. (2003). Bayesian inference of recent migration rates using multilocus genotypes. Genetics, 163(3), 1177–1191.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.School of Social Sciences, Centre for Population Change and S3RI, University of SouthamptonSouthamptonUK

Personalised recommendations