Ontologies in Biology

Chapter

Abstract

In recent years ontologies have come to play an increasingly important role in the biomedical domain. Primary applications have been the formalisation of community knowledge in molecular biology, and the provision of a shared vocabulary for the annotation of the growing amount of biological data being generated. Ontologies now play a key role in the analysis and reporting of biological data and act as the basis for new biological services being hosted by various GRID projects. More formal methods from ontology theory are gradually being adopted, and have made the existing ontologies more robust. These approaches will continue to extend the number of potential applications for ontologies in the biomedical domain.

Keywords

Gene Ontology Domain Ontology Biomedical Ontology Biomedical Domain Phenotype Ontology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ashburner, M., et al. 2000. Gene ontology: Tool for the unification of biology. The gene ontology consortium. Nature Genetics 25(1):25–29.CrossRefGoogle Scholar
  2. Bada, M., and L. Hunter. 2007. Enrichment of OBO ontologies. Journal of Biomedical Informatics 40(3):300–315.CrossRefGoogle Scholar
  3. Beissbarth, T., and T.P. Speed. 2004. GOstat: Find statistically overrepresented gene ontologies within a group of genes. Bioinformatics 20(9):1464–1465.CrossRefGoogle Scholar
  4. Bodenreider, O., et al. 2003. Evaluation of WordNet as a source of lay knowledge for molecular biology and genetic diseases: A feasibility study. Studies in Health Technology and Informatics 95:379–384.Google Scholar
  5. Boeckmann, B., et al. 2003. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Research 31(1):365–370.CrossRefGoogle Scholar
  6. Burek, P., et al. 2006. A top-level ontology of functions and its application in the open biomedical ontologies. Bioinformatics 22(14):e66–e73.CrossRefGoogle Scholar
  7. Camon, E., et al. 2004. The gene ontology annotation (GOA) database: Sharing knowledge in uniprot with gene ontology. Nucleic Acids Research 32(Database issue):D262–D266.CrossRefGoogle Scholar
  8. Camon, E.B., et al. 2005. An evaluation of GO annotation retrieval for BioCreAtIvE and GOA. BMC Bioinformatics 6(Suppl 1):17.CrossRefGoogle Scholar
  9. Ceusters, W., et al. 2007. Negative findings in electronic health records and biomedical ontologies: A realist approach. . International Journal of Medical Informatics 76(Suppl 3):S326–S333.CrossRefGoogle Scholar
  10. Day-Richter, J., et al. 2007. OBO-edit – An ontology editor for biologists. Bioinformatics 23(16):2198–2200.CrossRefGoogle Scholar
  11. Eiter, T., et al. 2006. Dlvhex: A system for integrating multiple semantics in an answer-set programming framework. Proceedings 20th Workshop on Logic Programming and Constraint Systems (WLP 06).Google Scholar
  12. Field, D., et al. 2006. Meeting report: eGenomics: Cataloguing our complete genome collection II. OMICS: A Journal of Integrative Biology 10(2):100–104.CrossRefGoogle Scholar
  13. Giles, J. 2007. Key biology databases go wiki. Nature 445(7129): 691.CrossRefGoogle Scholar
  14. Golbreich, C., and I. Horrocks. 2007. The OBO to OWL mapping, go to OWL 1.1! Proceedings of OWL-ED 2007.Google Scholar
  15. Grenon, P. 2003. BFO in a nutshell: A bi-categorial axiomatization of BFO and comparison with DOLCE.Google Scholar
  16. Grenon, P., et al. 2004. Biodynamic ontology: Applying BFO in the biomedical domain. Studies in Health Technology and Informatics 102:20–38.Google Scholar
  17. Harris, M.A., et al. 2004. The gene ontology (GO) database and informatics resource. Nucleic Acids Research 32(Database issue):D258–D261.Google Scholar
  18. Herre, H., et al. General formal ontology (GFO): A foundational ontology integrating objects and processes. Part I: Basic principles.Google Scholar
  19. Hirschman, L., et al. 2005. Overview of BioCreAtIvE: Critical assessment of information extraction for biology. BMC Bioinformatics 6(Suppl 1):S1.CrossRefGoogle Scholar
  20. Hoehndorf, R., et al. 2006. A proposal for a gene functions Wiki. On the Move to Meaningful Internet Systems 2006: OTM 2006 Workshops, 669–678.Google Scholar
  21. Karp, P.D., et al. 2005. Expansion of the bioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Research 33(19): 6083–6089.CrossRefGoogle Scholar
  22. Kelso, J., et al. 2003. eVOC: A controlled vocabulary for unifying gene expression data. Genome Research 13(6A):1222–1230.CrossRefGoogle Scholar
  23. Kim, J.D., et al. 2003. GENIA corpus-semantically annotated corpus for bio-textmining. Bioinformatics 19 Suppl 1:i180–i182.CrossRefGoogle Scholar
  24. Kumar, A., and B. Smith. 2004. Enhancing GO for the sake of clinical bioinformatics. Proceedings of Bio-Ontologies Workshop.Google Scholar
  25. Kumar, A., et al. 2003. The unified medical language system and the gene ontology: Some Critical Reflections. KI2003: Advances in AI: 135–148.Google Scholar
  26. Leuf, B., and W. Cunningham. 2001. The wiki way: Quick collaboration on the web. Boston, MA: Addison-Wesley.Google Scholar
  27. Lewis, S. E. 2005. Gene ontology: Looking backwards and forwards. Genome Biology 6(1):103.CrossRefGoogle Scholar
  28. Lockhart, D.J., and E.A. Winzeler. 2000. Genomics, gene expression and DNA arrays. Nature 405(6788):827–36.CrossRefGoogle Scholar
  29. Loebe, F. 2005. Abstract vs. social roles: A refined top-level ontological analysis. Proceedings of the 2005 AAAI fall symposium roles, An Interdisciplinary Perspective: Ontologies, Languages, and Multiagent Systems’, AAAI.Google Scholar
  30. Manly, K.F., D. Nettleton, et al. 2004. Genomics, prior probability, and statistical tests of multiple hypotheses. Genome Research 14(6):997–1001.CrossRefGoogle Scholar
  31. Masolo, C., et al. 2003. Wonderweb deliverable D17. The WonderWeb Library of Foundational Ontologies and the DOLCE ontology.Google Scholar
  32. Maturana, H.R., and F.J. Varela. 1991. Autopoiesis and cognition: Realization of the living (Boston studies in the philosophy of science). Berlin: Springer.Google Scholar
  33. McGuinness, D.L., and V.H., Frank. 2004. OWL web ontology language overview.Google Scholar
  34. Noy, N.F., et al. 2003. Protege-2000: An open-source ontology-development and knowledge-acquisition environment. AMIA Annual Symposium Proceedings: 953.Google Scholar
  35. Pruefer, K., et al. 2007. FUNC: A package for detecting significant associations between gene sets and ontological annotations. BMC Bioinformatics 8:41.CrossRefGoogle Scholar
  36. Prufer, K., et al. 2007. FUNC: A package for detecting significant associations between gene sets and ontological annotations. BMC Bioinformatics 8:41.CrossRefGoogle Scholar
  37. Racunas, S.A., et al. 2004. HyBrow: A prototype system for computer-aided hypothesis evaluation. Bioinformatics 20(Suppl 1):i257–i264.CrossRefGoogle Scholar
  38. Rector, A.L., and W.A. Nowlan. 1994. The GALEN project. Computer Methods and Programs in Biomedicine 45(1–2):75–78.CrossRefGoogle Scholar
  39. Rosse, C., and J.L. Mejino, Jr. 2003. A reference ontology for biomedical informatics: The foundational model of anatomy. Journal of biomedical informatics 36(6):478–500.CrossRefGoogle Scholar
  40. Schulz, S., et al. 2006. Towards an upper level ontology for molecular biology. AMIA Annual Symposium Proceedings: 694–698.Google Scholar
  41. Schulze-Kremer, S. 1998. Ontologies for molecular biology. Pacific Symposium on Biocomputing 3:695.Google Scholar
  42. Schulze-Kremer, S. 2002. Ontologies for molecular biology and bioinformatics. In Silico Biology 2(3):179–193.Google Scholar
  43. Smith, B., et al. 2003. The ontology of the gene ontology.Google Scholar
  44. Smith, B., et al. 2004. On the application of formal principles to life science data: A case study in the gene ontology. Proceedings of DILS 2004 (Data Integration in the Life Sciences), Springer.Google Scholar
  45. Smith, B., et al. 2005. Relations in biomedical ontologies. Genome Biology 6(5):R46.CrossRefGoogle Scholar
  46. Smith, C.L., et al. 2005. The mammalian phenotype ontology as a tool for annotating, analyzing and comparing phenotypic information. Genome Biology 6(1):R7.CrossRefGoogle Scholar
  47. Soldatova, L.N., and R.D. King. 2006. An ontology of scientific experiments. Journal of the Royal Society Interface 3(11):795–803.CrossRefGoogle Scholar
  48. Soldatova, L.N., et al. 2006. An ontology for a robot scientist. Bioinformatics 22(14):e464–e471.CrossRefGoogle Scholar
  49. Wang, K. 2006. Gene-function wiki would let biologists pool worldwide resources. Nature 439(7076):534.CrossRefGoogle Scholar
  50. Wheeler, D.L., et al. 2003. Database resources of the national center for biotechnology. Nucleic Acids Research 31(1):28.CrossRefGoogle Scholar
  51. Whetzel, P.L., et al. 2006. The MGED ontology: A resource for semantics-based description of microarray experiments. Bioinformatics 22(7):866–873.CrossRefGoogle Scholar
  52. Wolstencroft, K., et al. 2006. Protein classification using ontology classification. Bioinformatics 22(14):e530–e538.CrossRefGoogle Scholar

Copyright information

© Springer Netherlands 2010

Authors and Affiliations

  1. 1.Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
  2. 2.Department of Computer ScienceUniversity of LeipzigLeipzigGermany

Personalised recommendations