The Ontology of Mereological Systems: A Logical Approach

  • Heinrich Herre


Mereology is the theory of parthood relations. These relations pertain to part to whole, and part-to-part within a whole. This area of research is today some of the core topics of ontology and of conceptual modelling in computer science and artificial intelligence. The present paper addresses a number of relevant topics of this research field. First, the paper presents an overview on the main abstract mereological systems, axiomatized in first Order Logic (FOL). Second, basic relations between merelogy and set theory are discussed. This section is based mainly on the results of D. Lewis. Third, the paper is devoted to a systematic classification of merelogical systems. We present a partial classification of the consistent complete extensions of two theories, of the general extension mereology (GEM) including the second order variant, and of the classical merelogy CM. Then, we present some new systems which are extensions of the ground mereology M by introducing the notion of the tree-skeleton of a partial ordering. A complete and general description of the notion of whole and part which works for every situation seems to be impossible. Hence, we purpose a logical framework which allows to formally capture the main aspects of parts and wholes.


Boolean Algebra Distributive Lattice First Order Logic Proper Part Relative Complement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Many thanks to F. Loebe, and R. Hoehndorf for diverse discussions about several topics of mereology. I am grateful to R. Poli and anonymous reviewers their critical remarks that contributed to the quality of paper.


  1. Brentano, F. 1968. Kategorienlehre. Felix Meiner: Hamburg.Google Scholar
  2. Brentano, F. 1973. Raum, Zeit, und Kontinuum. Hamburg: Meiner Verlag.Google Scholar
  3. Bunge, M. 1966. On null individuals. Journal of Philosophy 63:776–778.CrossRefGoogle Scholar
  4. Burkhardt, H., and C.A. Dufour. 1991 Part/whole I: History. In Handbook of metaphysics and ntology, eds. H. Burkhardt, and B. Smith, 663–673. München: Philosophia.Google Scholar
  5. Cantor, G. 1932. Gesammelte Abhandlungen mathematischen und philosophischen Inhalts. ed. Zermelo E. Berlin: Springer.Google Scholar
  6. Chang, C.C., and H.J. Keisler. 1977. Model theory, Amsterdam: North-Holland Publishing Company.Google Scholar
  7. Chisholm, R.M. 1878. Brentano’s conception of substance and accident. Grazer Philosophische Studien 5:197–210Google Scholar
  8. Cruse, D.A. 1979. On the ransitivity of the part-whole relation. Journal of Linguistics 15:29–38.CrossRefGoogle Scholar
  9. Devlin, K. 1993. Set theory: The joy of sets, 2nd ed. New York, NY: Springer.CrossRefGoogle Scholar
  10. Eberle, R.A. 1970. Nominalistic systems. Dordrecht: Reidel.CrossRefGoogle Scholar
  11. Ehrenfels, C. 1890. von: Über Gestaltqualitäten. Vierteljahresschrift für wissenschaftliche Philosophie 14:249–292.Google Scholar
  12. Ershov, Y. 1980. Problemi Rasreshimost i Konstruktivnije Modeli. Moskva: Nauka,Google Scholar
  13. Ershov, Y., I. Lavrov, A. Taimanov, and A.D. Taitslin. 1965. .Elementarnie Teorii. IMN 20(4): 37–108.Google Scholar
  14. Gerstl, P., S. Pribbenow. 1995. Midwinters, end games, and bodyparts. A classification of part-whole relations. Interntional Journal of Human-Computer Studies 43:865–889.CrossRefGoogle Scholar
  15. Grätzer, G. 1998. General lattice theory. Boston, MA: Birkhäuser.Google Scholar
  16. Guizzardi, G. 2005. Ontological foundations for structural conceptual models. Ph.D. thesis, Enschede, Telematica Institut, The Netherlands.Google Scholar
  17. Halmos, P.R. 1960. Naïve set theory. Princeton, NJ: Van Nostrand.Google Scholar
  18. Herre, H. 2010. This volume. The ontology of medical terminological systems. Towards the next Generation of Biomedical Ontologies.Google Scholar
  19. Herre, H., P. Burek, F. Loebe, F. Hoehndorf, and H. Michalek. 2006. General formal ontology (GFO) – A foundtional ontology integrating objects and processes, Onto-med report Nr. 8 , IMISE, Universität Leipzig.Google Scholar
  20. Hodges, W. 1993. Introduction to model theory. Cambridge: Cambridge University Press.Google Scholar
  21. Husserl, E. 1985. Die phänomenologische Methode. Ausgewählte Texte I. Stuttgart: ReclamGoogle Scholar
  22. Husserl, E. 1992a. Logische Untersuchungen., 2. Bd. Untersuchungen zur Phänomenologie und der Theorie der Erkenntnis. Hamburg: Verlag Felix Meiner.Google Scholar
  23. Husserl, E. 1992b. Ideen zu einer reinen Phänomenologie. Hamburg: Verlag Felix Meiner.Google Scholar
  24. Inwagen, van P. 1993 Naïve mereology, admissable valuations, and other matters. Nous 27: 229–234.CrossRefGoogle Scholar
  25. Johnston, M. 1992. Constitution is not identity. Mind 101:89–105CrossRefGoogle Scholar
  26. Kleene, S.C. 1967. Mathematical logic. New York, NY: Wiley.Google Scholar
  27. Kleinknecht, R. 1992. Mereologische strukturen der welt. Wissenschaftliche Zeitschrift der Humboldt-Universität zu berlin, Reihe der Geistes- und Sozialwissenschafteb 41: 40–53Google Scholar
  28. Läuchli, H., and L. Leonard. 1966. On the elementary theory of linear order. Fundamenta Mathemat-icae 59:109–116.Google Scholar
  29. Lesniewski, S. 1929. Grundzüge eines neuen Systems der Grundlagen der Mathematik, Fundamenta Mathematicae IXV:1–81Google Scholar
  30. Lewis, D. 1986. On the pluraty of the world. Oxford: Blackwell.Google Scholar
  31. Lewis, D. 1991. Parts and classes. Oxford: BlackwellGoogle Scholar
  32. Lewis, D. 1993. Mathematics is megethology. Philosophia Matematica 3:3–23.CrossRefGoogle Scholar
  33. Markosian, N. 1998. Bruatl composition. Philos0phical Studies 92:211–249.CrossRefGoogle Scholar
  34. Martin, R.M. 1965. Of time and the null individual. Journal of Philosophy 62:723–736.CrossRefGoogle Scholar
  35. Mendelson, E. 2001. Introduction to mathematical logic. London: Chapman and Hall.Google Scholar
  36. Moltmann, R. 1997. Parts and wholes in semantics. Oxford: University Press.Google Scholar
  37. Oliver, A. 1992. The metaphysics of singletons. Mind 101:129–140.CrossRefGoogle Scholar
  38. Oliver, A. 1994. Are subclasses pats of classes? Analysis 54/4:215–223.Google Scholar
  39. Pribbenow, S. 2002. Meronymic relationships. In R. Green, and C.A. Bean, ed. Dordrecht: Kluwer PublicationGoogle Scholar
  40. Rescher, N. 1955a. Axioms for the part relation. Philosophical Studies 6:8–11CrossRefGoogle Scholar
  41. Rescher, N., and P. Oppenheim. 1955b. Logical analysis of gestalt concepts. British Journal for Philosophy of Science 6:89–106CrossRefGoogle Scholar
  42. Ridder, L. 2002. Mereology. Frankfurt am main: Vittorio KlostermannCrossRefGoogle Scholar
  43. Robbin, J.W. 1969. Mathematical logic. Menlo Park: W. A. Benjamin.Google Scholar
  44. Sanford, D. 1993. The problem of the many. Many composition quantifiers, and naive mereology. Nous 27:219–228CrossRefGoogle Scholar
  45. Shoenfield, J.R. 1967. Mathematical logic. Reading, MA: Addison Wesley.Google Scholar
  46. Sider, T. 1997. Four dimensionalism. An ontology of persistence and time. New York, NY: Oxford University Press.Google Scholar
  47. Simons, P. 1987. Parts – A study in ontology. Oxford: Clarendon Press.Google Scholar
  48. Tarski, A. 1935. Zur Grundlegung der Booleschen Algebra I. Fundamenta Mathemat-icae 24: 177–198.Google Scholar
  49. Tarski, A., A. Mostowski,, and R.M. Robinson. .1953. Undecidable theories. Amsterdam: North HollandGoogle Scholar
  50. Tversky, B.1989. Parts, partonomies, and taxonomies. Development Psychology 25:983–995Google Scholar
  51. Varzi, A. 1996. Parts, wholes and part-whole relations: The prospects of mereotopology. Data and Knowledge Engineering 20(3):259–286.CrossRefGoogle Scholar
  52. Wertheimer, M. 1922. Untersuchungen zur Lehre von der Gestalt I. Psychologische Forschung 1:,47–58.CrossRefGoogle Scholar
  53. Wertheimer, M. 1923. Untersuchungen zur Lehre von der Gestalt II. Psychologische Forschung 4:,301–350CrossRefGoogle Scholar
  54. Zimmermann, D.W. 1996. Could be extended objects be made out of simple parts? An argument for “Atomless gunk”. Philosophy and Phenomenological Research 56:1–29CrossRefGoogle Scholar

Copyright information

© Springer Netherlands 2010

Authors and Affiliations

  1. 1.Research Group Onto-MedIMISE, University LeipzigLeipzigGermany

Personalised recommendations