Measurement of Ex Vivo and In Vivo Tissue Optical Properties: Methods and Theories

  • Anthony Kim
  • Brian C. Wilson


In this chapter, the various experimental techniques that have been developed to measure the optical scattering and absorption properties of tissues are discussed, together with the theory underlying these methods.


Diffuse Reflectance Fluence Rate Tissue Surface Diffusion Theory Scatter Phase Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Alex Vitkin for consultation on photothermal physics. Tomas Svensson, Erik Alerstam, and Stefan Andersson-Engels generously provided data and contributions to the time-resolved diffuse reflectance section. Mathieu Roy performed the integrating sphere measurements on ex vivo tissue. Lee Chin and Brendan Lloyd produced the data for the radiance measurements section. Anthony Kim is supported by NIH Grant R01 NS052274 (USA) and by the Natural Sciences and Engineering Research Council of Canada.


  1. 1.
    Gebhart SC, Lin WC, and Mahadevan-Jansen A. In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling. Phys. Med. Biol., 51:2011–2027 (2006).CrossRefGoogle Scholar
  2. 2.
    Prahl SA, van Gemert MJC, and Welch AJ. Determining the optical properties of turbid media by using the adding-doubling method. Appl. Opt., 32:559–568 (1993).ADSCrossRefGoogle Scholar
  3. 3.
    Farrell TJ, Patterson MS, and Wilson BC. A diffusion theory model of spatially resolved, steady-state diffuse reluctance for the non-invasive determination of tissue optical properties in vivo. Med. Phys., 19:879–888 (1992).Google Scholar
  4. 4.
    Peters VG, Wyman DR, Patterson MS, and Frank GL. Optical properties of normal and diseased human breast tissues in the visible and near infrared. Phys. Med. Biol., 35:1317–1334 (1990).CrossRefGoogle Scholar
  5. 5.
    Salomatina E, Jiang B, Novak J, and Yaroslavsky AN. Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range. J. Biomed. Opt., 11:064026 (2006).ADSCrossRefGoogle Scholar
  6. 6.
    Yaroslavsky IV, Yaroslavsky AN, Goldbach T, and Schwarzmaier HJ. Inverse hybrid technique for determining the optical properties of turbid media from integrating-sphere measurements. Appl. Opt., 35:6797–6809 (1996).ADSCrossRefGoogle Scholar
  7. 7.
    Durduran T, Choe R, Culver JP, Zubkov L, Holboke MJ, Giammarco J, Chance B, and Yodh AG. Bulk optical properties of healthy female breast tissue. Phys. Med. Biol., 47:2847–2861 (2002).CrossRefGoogle Scholar
  8. 8.
    Zhu TC, Finlay JC, and Hahn SM. Determination of the distribution of light, optical properties, drug concentration, and tissue oxygenation in-vivo in human prostate during motexafin lutetium-mediated photodynamic therapy. J. Photochem. Photobiol. B, 79:231–241 (2005).CrossRefGoogle Scholar
  9. 9.
    Chin LC, Whelan WM, and Vitkin IA. Information content of point radiance measurements in turbid media: Implications for interstitial optical property quantification. Appl. Opt., 45:2101–2114 (2006).ADSCrossRefGoogle Scholar
  10. 10.
    Cuccia DJ, Bevilacqua F, Durkin AJ, and Tromberg BJ. Modulated imaging: Quantitative analysis and tomography of turbid media in the spatial-frequency domain. Opt. Lett., 30:1354–1356 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    Svensson T, Andersson-Engels S, Einarsdóttír M, and Svanberg K. In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy. J. Biomed. Opt., 12:014022 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    Tromberg BJ, Shah N, Lanning R, Cerussi A, Espinoza J, Pham T, Svaasand L, and Butler J. Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy. Neoplasia 2:26–40 (2000).CrossRefGoogle Scholar
  13. 13.
    Long FH, Anderson RR, and Deutsch TF. Pulsed photothermal radiometry for depth profiling of layered media. App. Phys. Lett., 51:2076–2078 (1987).ADSCrossRefGoogle Scholar
  14. 14.
    Nelson JS, Jacques SL, and Wright WH. Determination of thermal and physical properties of port wine stain lesions using pulsed photothermal radiometry. Proc. SPIE 1643:287–298 (1992).ADSCrossRefGoogle Scholar
  15. 15.
    Rosencwaig A. Photoacoustics and photoacoustic spectroscopy. Wiley, New York (1980).Google Scholar
  16. 16.
    Friebel M, Roggan A, Müller G, and Meinke MJ. Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions. J. Biomed. Opt., 11:34021 (2006).CrossRefGoogle Scholar
  17. 17.
    Jacques SL and Prahl SA. Modeling optical and thermal distributions in tissue during laser irradiation. Lasers Surg. Med., 6:494–503 (1987).CrossRefGoogle Scholar
  18. 18.
    Karagiannis JL, Zhang Z, Grossweiner G, and Grossweiner LI. Applications of the 1-D diffusion approximation to the optics of tissues and tissue phantoms. Appl. Opt., 28:2311–2317 (1989).ADSCrossRefGoogle Scholar
  19. 19.
    Flock ST, Wilson BC, and Patterson MS. Total attenuation coefficients and scattering phase functions of tissues and phantom materials at 633 nm. Med. Phys 14:835–842 (1987).CrossRefGoogle Scholar
  20. 20.
    Marchesini R, Bertoni A, Andreola S, Melloni E, and Sichirollo AE. Extinction and absorption coefficients and scattering phase functions of human tissues in vitro. Appl. Opt., 28:2318–2324 (1989).ADSCrossRefGoogle Scholar
  21. 21.
    Jacques SL, Alter CA, and Prahl SA. Angular dependence of HeNe laser light scattering by human dermis. Lasers Life Sci., 1:309–333 (1987).Google Scholar
  22. 22.
    Vogel A, Diugos G, Nuffer R, and Birngruber R. Optical properties of human sclera, and their consequences for transcleral laser applications. Lasers Surg. Med., 11:331–340 (1991).CrossRefGoogle Scholar
  23. 23.
    Pickering JW, Prahl SA, Wieringen N van, Beek JF, Moes CJM, Sterenborg HJCM, and Gemert MJC van. Double integrating sphere system to measure optical properties of tissue. Appl. Opt., 32:399–410 (1993).ADSCrossRefGoogle Scholar
  24. 24.
    Star WM, Marijnissen JPA, and van Gemert MJC. Light dosimetry in optical phantoms and in tissues: I. Multiple flux and transport theory. Phys. Med. Biol., 33:437–454 (1988).CrossRefGoogle Scholar
  25. 25.
    Yoon G, Welch AJ, Motamedi M, and Gemert MJC van. Development and application of three-dimensional light distribution model for laser irradiated tissue. IEEE J. Quantum Electron., 23:1721–1732 (1987).ADSCrossRefGoogle Scholar
  26. 26.
    Dam JS, Dalgaard T, Fabricius PE, and Andersson-Engels S. Multiple polynomial regression method for determination of biomedical optical properties from integrating sphere measurements. Appl. Opt., 39:1202–1209 (2000).ADSCrossRefGoogle Scholar
  27. 27.
    Splinter R, Cheong W-F, van Gemert MJC, and Welch AJ. In vitro optical properties of human and canine brain and urinary bladder tissues at 633 nm. Lasers Surg. Med., 9:37–41 (1989).CrossRefGoogle Scholar
  28. 28.
    Profio AE. Radiation shielding and dosimetry. Wiley, New York (1979).Google Scholar
  29. 29.
    Profio AE and Sarnaik J. Fluorescence of HpD for tumor detection and dosimetry in photoradiation therapy. In: DR Doiron and CD Gomer (eds) Porphyrin localization and treatment of tumors. Liss, New York, pp. 163–175 (1984).Google Scholar
  30. 30.
    Madsen SJ, Patterson MS, and Wilson BC. The use of India ink as an optical absorber in tissue-simulating phantoms. Phys. Med. Biol., 37:985–993 (1992).CrossRefGoogle Scholar
  31. 31.
    Chan E, Menovsky T, and Welch AJ. Effects of cryogenic grinding on soft-tissue optical properties. Appl. Opt., 35:4526–4532 (1996).ADSCrossRefGoogle Scholar
  32. 32.
    Bolin FP, Preuss LE, Taylor RC, and Ference RJ. Refractive index of some mammalian tissues using a fiber optic cladding method. Appl. Opt., 28:2297 (1989).ADSCrossRefGoogle Scholar
  33. 33.
    Bargo PR, Prahl SA, Goodell TT, Sleven RA, Koval G, Blair G, and Jacques SL. In vivo determination of optical properties of normal and tumour tissue with white light reflectance and an empirical light transport model during endoscopy. J. Biomed. Opt., 10:034018 (2005).ADSCrossRefGoogle Scholar
  34. 34.
    Fishkin JB, Coquoz O, Anderson ER, Brenner M, and Tromberg BJ. Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject. Appl. Opt., 36:10–20 (1997).ADSCrossRefGoogle Scholar
  35. 35.
    Ntziachristos V and Chance B. Probing physiology and molecular function using optical imaging: Applications to breast cancer. Breast Cancer Res., 3:41–46 (2001).CrossRefGoogle Scholar
  36. 36.
    Palmer GM, Zhu C, Breslin TM, Xu F, Gilchrist KW, and Ramanujam N. Monte Carlo-based inverse model for calculating tissue optical properties. Part II: Application to breast cancer diagnosis. Appl. Opt., 45:1072–1078 (2006).ADSCrossRefGoogle Scholar
  37. 37.
    Angell-Petersen E, Hirschberg H, and Madsen SJ. Determination of fluence rate and temperature distributions in the rat brain; implications for photodynamic therapy. J. Biomed. Opt., 12:014003 (2007).ADSCrossRefGoogle Scholar
  38. 38.
    Chen Q, Wilson BC, Shetty SD, Patterson MS, Cerny JC, and Hetzel FW. Changes in in vivo optical properties and light distributions in normal canine prostate during photodynamic therapy. Radiat. Res., 147:86–91 (1997).CrossRefGoogle Scholar
  39. 39.
    Chen Q, Wilson BC, Dereski MO, Patterson MS, Chopp M, and Hetzel FW. Effects of light beam size on fluence distribution and depth of necrosis in superficially applied photodynamic therapy of normal rat brain. Photochem. Photobiol., 56:379–384 (1992).CrossRefGoogle Scholar
  40. 40.
    Jankun J, Lilge L, Douplik A, Keck RW, Pestka M, Szkudlarek M, Stevens PJ, Lee RJ, and Selman SH. Optical characteristics of the canine prostate at 665 nm sensitized with tin etiopurpurin dichloride: Need for real-time monitoring of photodynamic therapy. J. Urol., 172:739–743 (2004).CrossRefGoogle Scholar
  41. 41.
    Weersink RA, Bogaards A, Gertner M, Davidson SR, Zhang K, Netchev G, Trachtenberg J, and Wilson BC. Techniques for delivery and monitoring of TOOKAD (WST09)-mediated photodynamic therapy of the prostate: Clinical experience and practicalities. J. Photochem. Photobiol. B., 79:211–222 (2005).CrossRefGoogle Scholar
  42. 42.
    Zhang Q, Müller MG, Wu J, and Feld MS. Turbidity-free fluorescence spectroscopy of biological tissue. Opt. Lett., 25:1451–1453 (2000).ADSCrossRefGoogle Scholar
  43. 43.
    Egan WG and Hilgeman TW. Optical properties of inhomogeneous materials. Academic, New York (1979).Google Scholar
  44. 44.
    Groenhuis FAJ, Ferwerda HA, and Ten Bosch JJ. Scattering and absorption of turbid materials derived from reflection coefficients., 1: Theory. Appl. Opt., 22:2456–2462 (1983).ADSCrossRefGoogle Scholar
  45. 45.
    Flock ST, Patterson MS, Wilson BC, and Wyman DR. Monte Carlo modeling of light propagation in highly scattering tissue—I: Model predictions and comparison with diffusion theory. IEEE Trans. Biomed. Eng., 36:1162–1168 (1989).CrossRefGoogle Scholar
  46. 46.
    Jacques SL, Gutsche A. Schwartz JA, Wang L, and Tittle FK. Video reflectometry to specify optical properties of tissue in vivo. Proc. SPIE IS11:211–226 (1993).Google Scholar
  47. 47.
    Kienle A, Lilge L, Patterson MS, Hibst R, Steiner R, and Wilson BC. Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue. Appl. Opt., 35:2304–2314 (1996).ADSCrossRefGoogle Scholar
  48. 48.
    Patterson MS, Schwartz E, and Wilson BC. Quantitative reflectance spectrophotometry for the non-invasive measurement of photosensitizer concentration in tissue. Proc. SPIE 1065:115–122 (1989).ADSGoogle Scholar
  49. 49.
    Allen V and McKenzie AL. The modified diffusion dipole model. Phys. Med. Biol., 36:1621–1638 (1991).CrossRefGoogle Scholar
  50. 50.
    Patterson MS, Chance B, and Wilson BC. Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties. Appl. Opt., 28:2331–2336 (1989).ADSCrossRefGoogle Scholar
  51. 51.
    Lin SP, Wang L, Jacques SL, and Tittel FK. Measurement of tissue optical properties by the use of oblique-incidence optical fiber reflectometry. Appl. Opt., 36:136–143 (1997).ADSCrossRefGoogle Scholar
  52. 52.
    Doornbos RM, Lang R, Aalders MC, Cross FW, and Sterenborg HJ. The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy. Phys. Med. Biol., 44:967–981 (1999).CrossRefGoogle Scholar
  53. 53.
    Pfefer TJ, Matchette LS, Bennett CL, Gall JA, Wilke JN, Durkin AJ, and Ediger MN. Reflectance-based determination of optical properties in highly attenuating tissue. J. Biomed. Opt., 8:206–215 (2003).ADSCrossRefGoogle Scholar
  54. 54.
    Arnfield MR, Tulip J, and McPhee MS. Optical propagation in tissue with anisotropic scattering. IEEE Trans. Biomed. Eng., 35:372–381 (1988).CrossRefGoogle Scholar
  55. 55.
    Amelink A, Sterenborg HJ, Bard MP, and Burgers SA. In vivo measurement of the local optical properties of tissue by use of differential path-length spectroscopy. Opt. Lett., 29:1087–1089 (2004).ADSCrossRefGoogle Scholar
  56. 56.
    Alerstam E, Andersson-Engels S, and Svensson T. White Monte Carlo for time-resolved photon migration. J. Biomed. Opt., 13:041304 (2008).ADSCrossRefGoogle Scholar
  57. 57.
    Mourant JR, Fuselier T, Boyer J, Johnson TM, and Bigio IJ. Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms. Appl. Opt., 36:949–957 (1997).ADSCrossRefGoogle Scholar
  58. 58.
    Reif R, A’amar O, and Bigio IJ. Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media. Appl. Opt., 46:7317–7328 (2007).ADSCrossRefGoogle Scholar
  59. 59.
    Amelink A and Sterenborg HJ. Measurement of the local optical properties of turbid media by differential path-length spectroscopy. Appl. Opt., 43:3048–3054 (2004).ADSCrossRefGoogle Scholar
  60. 60.
    Sun J, Fu K, Wang A, Lin AWH, Utzinger U, and Drezek R. Influence of fiber optic probe geometry on the applicability of inverse models of tissue reflectance spectroscopy: Computational models and experimental measurements. Appl. Opt., 45:8152–8162 (2006).ADSCrossRefGoogle Scholar
  61. 61.
    Landsman MLJ, Kwant G, Mook GA, and Zijlstra WG. Light- absorbing properties, stability, and spectral stabilization of indocyanine green. J. Appl. Physiol., 40:575–583 (1976).Google Scholar
  62. 62.
    Srinivasan S, Pogue BW, Jiang S, Dehghani H, and Paulsen KD. Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust reconstruction. Appl. Opt., 44:1858–1869 (2005).ADSCrossRefGoogle Scholar
  63. 63.
    Bevilacqua F, Piguet D, Marquet P, Gross JD, Tromberg BJ, and Depeursinge C. In vivo local determination of tissue optical properties: Applications to human brain. Appl. Opt., 38:4939–4950 (1999).ADSCrossRefGoogle Scholar
  64. 64.
    Patterson MS, Moulton JD, Wilson BC, Berndt KW, and Lakowicz JR. Frequency-domain reflectance for the determination of the scattering and absorption properties of tissue. Appl. Opt., 30:4474–4476 (1991).ADSCrossRefGoogle Scholar
  65. 65.
    Madsen SJ, Wilson BC, Patterson MS, Park YD, Jacques SL, and Hefetz Y. Experimental tests of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time resolved diffuse reflectance measurements. Appl. Opt., 31:3509–3517 (1992).ADSCrossRefGoogle Scholar
  66. 66.
    Svensson T, Swartling J, Taroni P, Torricelli A, Lindblom P, Ingvar C, and Andersson-Engels S. Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy. Phys. Med. Biol., 50:2559–2571 (2005).CrossRefGoogle Scholar
  67. 67.
    Chernomordik V, Hattery DW, Grosenick D, Wabnitz H, Rinneberg H, Moesta KT, Schlag PM, and Gandjbakhche A. Quantification of optical properties of a breast tumor using random walk theory. J. Biomed. Opt., 7:80–87 (2002).ADSCrossRefGoogle Scholar
  68. 68.
    Martelli F, Del Bianco S, Zaccanti G, Pifferi A, Torricelli A, Bassi A, Taroni P, and Cubeddu R. Phantom validation and in vivo application of an inversion procedure for retrieving the optical properties of diffusive layered media from time-resolved reflectance measurements. Opt. Lett., 29:2037–2039 (2004).ADSCrossRefGoogle Scholar
  69. 69.
    Pifferi A, Swartling J, Chikoidze E, Torricelli A, Taroni P, Bassi A, Andersson-Engels S, and Cubeddu R. Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances. J. Biomed. Opt., 9:1143–1151 (2004).ADSCrossRefGoogle Scholar
  70. 70.
    Torricelli A, Pifferi A, Taroni P, Giambattistelli E, and Cubeddu R. In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy. Phys. Med. Biol., 46:2227–2237 (2001).CrossRefGoogle Scholar
  71. 71.
    Martelli F, Sassaroli A, Del Bianco S, Yamada Y, and Zaccanti G. Solution of the time-dependent diffusion equation for layered diffusive media by the eigenfunction method. Phys. Rev. E, 67:056623 (2003).MathSciNetADSCrossRefGoogle Scholar
  72. 72.
    Kienle A and Glanzmann T. In vivo determination of the optical properties of muscle with time-resolved reflectance using a layered model. Phys. Med. Biol., 44:2689–2702 (1999).CrossRefGoogle Scholar
  73. 73.
    Gurfinkel M, Pan T, and Sevick-Muraca EM. Determination of optical properties in semi-infinite turbid media using imaging measurements of frequency-domain photon migration obtained with an intensified charge-coupled device. J. Biomed. Opt., 9:1336–1346 (2004).ADSCrossRefGoogle Scholar
  74. 74.
    Bevilacqua F, Berger AJ, Cerussi AE, Jakubowski D, and Tromberg BJ. Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods. Appl. Opt., 39:6498–6507 (2000).ADSCrossRefGoogle Scholar
  75. 75.
    Wilson BC, Patterson MS, and Pogue BW. Instrumentation for in-vivo tissue spectroscopy and imaging. Proc. SPIE 1892:132–147 (1993).ADSCrossRefGoogle Scholar
  76. 76.
    Pham TH, Spott T, Svaasand LO, and Tromberg BJ. Quantifying the properties of two-layer turbid media with frequency-domain diffuse reflectance. Appl. Opt., 39:4733–4745 (2000).ADSCrossRefGoogle Scholar
  77. 77.
    Fawzi YS, Youssef AB, el-Batanony MH, and Kadah YM. Determination of the optical properties of a two-layer tissue model by detecting photons migrating at progressively increasing depths. Appl. Opt., 42:6398–6411 (2003).ADSCrossRefGoogle Scholar
  78. 78.
    Dickey DJ, Moore RB, Rayner DC, and Tulip J. Light dosimetry using the P3 approximation. Phys. Med. Biol., 46:2359–2370 (2001).CrossRefGoogle Scholar
  79. 79.
    Chin LC, Worthington AE, Whelan WM, and Vitkin IA. Determination of the optical properties of turbid media using relative interstitial radiance measurements: Monte Carlo study, experimental validation and sensitivity analysis. J. Biomed. Opt., 12:064027 (2007).ADSCrossRefGoogle Scholar
  80. 80.
    Arridge SR. Optical tomography in medical imaging. Inverse Problems 15:R41–R93 (1999).MathSciNetADSzbMATHCrossRefGoogle Scholar
  81. 81.
    Dehghani H, Pogue BW, Shudong J, Brooksby B, and Paulsen KD. Three-dimensional optical tomography: Resolution in small-object imaging. Appl. Opt., 42:3117–3128 (2003).ADSCrossRefGoogle Scholar
  82. 82.
    Yuan Z, Zhang Q, Sobel E, and Jiang H. Three-dimensional diffuse optical tomography of osteoarthritis: Initial results in the finger joints. J. Biomed. Opt., 12:034001 (2007).ADSCrossRefGoogle Scholar
  83. 83.
    Ntziachristos V, Ma X, and Chance B. Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography. Rev. Sci. Instr., 69:4221–4233 (1998).ADSCrossRefGoogle Scholar
  84. 84.
    McBride TO, Pogue BW, Jiang S, Osterberg UL, and Paulsen KD. A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo. Rev. Sci. Instrum. 72:1817–1824 (2001).ADSCrossRefGoogle Scholar
  85. 85.
    Hielscher AH. Optical tomographic imaging of small animals. Curr. Opin. Biotechnol., 16:79–88 (2005).CrossRefGoogle Scholar
  86. 86.
    van Veen RL, Amelink A, Menke-Pluymers M, van der Pol C, and Sterenborg HJ. Optical biopsy of breast tissue using differential path-length spectroscopy. Phys. Med. Biol., 50:2573–2581 (2005).CrossRefGoogle Scholar
  87. 87.
    van Staveren HG, Moes CJM, van Marle J, Prahl SA, and van Gemert MJC. Light scattering in Intralipid-10% in the wavelength range of 400–1100 nanometers. Appl. Opt., 30:4507–4514 (1991).ADSCrossRefGoogle Scholar
  88. 88.
    Dimofte A, Finlay JC, and Zhu TC. A method for determination of the absorption and scattering properties interstitially in turbid media. Phys. Med. Biol., 50:2291–311 (2005).CrossRefGoogle Scholar
  89. 89.
    Bays R, Wagnieres G, Robert D, Braichotte D, Savary J-F, Monnier P, and van den Bergh H. Clinical determination of tissue optical properties by endoscopic spatially resolved reflectometry. Appl. Opt., 35:1756–1766 (1996).ADSCrossRefGoogle Scholar
  90. 90.
    Spinelli L, Torricelli A, Pifferi A, Taroni P, Danesini GM, and Cubeddu R. Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography. J. Biomed. Opt., 9:1137–1142 (2004).ADSCrossRefGoogle Scholar
  91. 91.
    van Veen RLP, Sterenborg HJ, Marinelli, AW, and Menke-Pluymers M. Intraoperatively assessed optical properties of malignant and healthy breast tissue used to determine the optimum wavelength of contrast for optical mammography. J. Biomed. Opt., 9:1129–1136 (2004).ADSCrossRefGoogle Scholar
  92. 92.
    Zhu TC, Dimofte A, Finlay JC, Stripp D, Busch T, Miles J, Whittington R, Malkowicz SB, Tochner Z, Glatstein E, and Hahn SM. Optical properties of human prostate at 732 nm measured in mediated photodynamic therapy. Photochem. Photobiol., 81:96–105 (2005).CrossRefGoogle Scholar
  93. 93.
    Hornung R, Pham TH, Keefe KA, Berns MW, Tadir Y, and Tromberg BJ. Quantitative near-infrared spectroscopy of cervical dysplasia in vivo. Hum. Reprod., 14:2908–2916 (1999).CrossRefGoogle Scholar
  94. 94.
    Asgari S, Röhrborn HJ, Engelhorn T, and Stolke D. Intra-operative characterization of gliomas by near-infrared spectroscopy: Possible association with prognosis. Acta Neurochir.(Wien), 145:453–459 (2003).Google Scholar
  95. 95.
    Thueler P, Charvet I, Bevilacqua F, St Ghislain M, Ory G, Marquet P, Meda P, Vermeulen B, and Depeursinge C. In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties. J. Biomed. Opt., 8:495–503 (2003).ADSCrossRefGoogle Scholar
  96. 96.
    Prahl SA, Vitkin IA, Bruggemann U, and Wilson BC. Determination of optical properties of turbid media using pulsed photothermal radiometry. Phys. Med. Biol., 37:1203–1217 (1992).CrossRefGoogle Scholar
  97. 97.
    Majaron B, Verkruysse W, Tanenbaum BS, Milner TE, and Nelson JS. Spectral variation of the infrared absorption coefficient in pulsed photothermal profiling of biological samples. Phys. Med. Biol., 47:1929–1946 (2002).CrossRefGoogle Scholar
  98. 98.
    Anderson RR, Beck H, Bruggemann U, Farinelli W, Jacques SL, and Parrish JA. Pulsed photothermal radiometry in turbid media: Internal reflection of backscattered radiation strongly influences optical dosimetry. Appl. Opt., 28:2256–2262 (1989).ADSCrossRefGoogle Scholar
  99. 99.
    Nicolaides L, Chen Y, Mandelis A, and Vitkin IA. Theoretical, experimental, and computational aspects of optical property determination of turbid media by using frequency-domain laser infrared photothermal radiometry. J. Opt. Soc. Am. A Opt. Image. Sci. Vis., 18:2548–56 (2001).ADSCrossRefGoogle Scholar
  100. 100.
    Laufer JG, Beard PC, Walker SP, and Mills TN. Photothermal determination of optical coefficients of tissue phantoms using an optical fibre probe. Phys. Med. Biol., 46:2515–30 (2001).CrossRefGoogle Scholar
  101. 101.
    Chen B. Experimental and modeling study of thermal response of skin and cornea to infrared wavelengths laser irradiation. Dissertation, University of Texas, Austin, December 2007.Google Scholar
  102. 102.
    Viator JA Choi B, Peavy GM, Kimel S, and Nelson JS. Spectra from 2.5–15 microm of tissue phantom materials, optical clearing agents and ex vivo human skin: Implications for depth profiling of human skin. Phys. Med. Biol., 48:N15–N24 (2003).CrossRefGoogle Scholar
  103. 103.
    Huang YC, Ringold TL, Nelson JS, and Choi B. Noninvasive blood flow imaging for real-time feedback during laser therapy of port wine stain birthmarks. Lasers Surg. Med., 40:167–173 (2008).CrossRefGoogle Scholar
  104. 104.
    Bernini U, Reccia R, Russo P, and Scala A. Quantitative photoacoustic spectroscopy of cateractous human lenses. J. Photochem. Photobiol. B4:407–417 (1990).Google Scholar
  105. 105.
    Helander P. Theoretical aspects of photoacoustic spectroscopy with light scattering samples. J. Appl. Phys., 54:3410–3414 (1987).ADSCrossRefGoogle Scholar
  106. 106.
    Zhao Z and Myllylä R. Measuring the optical parameters of weakly absorbing, highly turbid suspensions by a new technique: Photoacoustic detection of scattered light. Appl. Opt., 44:7845–7852 (2005).ADSCrossRefGoogle Scholar
  107. 107.
    Bernini U, Marotta M, Martino G, and Russo P. Spectrophotoacoustic method for quantitative estimation of haem protein content in wet tissue. Phys. Med. Biol., 36:391–396 (1991).CrossRefGoogle Scholar
  108. 108.
    Gibson AP, Hebden JC, and Arridge SR. Recent advances in diffuse optical imaging. Phys. Med. Biol., 50:R1–R43 (2005).ADSCrossRefGoogle Scholar
  109. 109.
    Oraevsky AA, Jacques SL, and Tittel FK. Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress. Appl. Opt., 36:402–415 (1997).ADSCrossRefGoogle Scholar
  110. 110.
    Esenaliev RO, Larin KV, Larina IV, Motamedi M, and Oraevsky AA. Optical properties of normal and coagulated tissues: Measurements using combination of optoacoustic and diffuse reflectance techniques. Proc. SPIE 3726:560–566 (1999).ADSCrossRefGoogle Scholar
  111. 111.
    Yang X and Wang LV. Photoacoustic tomography of a rat cerebral cortex with a ring-based ultrasonic virtual point detector. J. Biomed. Opt., 12:060507 (2007).ADSCrossRefGoogle Scholar
  112. 112.
    Song KH and Wang LV. Deep reflection-mode photoacoustic imaging of biological tissue. J. Biomed. Opt., 12:060503 (2007).ADSCrossRefGoogle Scholar
  113. 113.
    Wang X, Xie X, Ku G, and Wang LV. Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography. J. Biomed. Opt., 11:024015 (2006).ADSCrossRefGoogle Scholar
  114. 114.
    Wang X, Pang Y, Ku G, Xie X, Stoica G, and Wang LV. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat. Biotechnol., 21:803–806 (2003).CrossRefGoogle Scholar
  115. 115.
    Zhang HF, Maslov K, and Sivaramakrishnan M. Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy. Appl. Phys. Lett., 90:053901 (2007).ADSCrossRefGoogle Scholar
  116. 116.
    Wilson BC. Measurement of tissue optical properties: Methods and theories. In: AJ Welch and MJC van Gemert (eds) Optical-thermal response of laser irradiated tissue. Plenum, New York (1995).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Medical BiophysicsUniversity of Toronto and Ontario Cancer InstituteTorontoCanada

Personalised recommendations