Laser Treatment of Port Wine Stains

  • Boris Majaron
  • J. Stuart Nelson


Port wine stain (PWS), also called nevus flammeus, is a congenital, cutaneous vascular malformation involving post-capillary venules which produce a light pink to red to dark-red-violet discoloration of human skin [1]. PWS occurs in an estimated 3 children per 1000 live births, affecting males and females and all racial groups equally [2]. There appears to be no hereditary predilection for PWS within families. There are no known risk factors or ways to prevent PWS.


Monte Carlo Thermal Relaxation Time Port Wine Stain Optical Screening Explosive Vaporization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Mulliken JB and Young AR. Vascular birthmarks – hemangiomas and malformations. WB Saunders, Philadelphia, PA (1988).Google Scholar
  2. 2.
    Jacobs AH and Walton RG. The incidence of birthmarks in the neonate. Pediatrics, 58:218–222 (1976).Google Scholar
  3. 3.
    Heller A, Rafman S, Zvagulis I, and Pless IB. Birth defects and psychosocial adjustment. Am. J. Dis. Child., 139:257–263 (1985).Google Scholar
  4. 4.
    Malm M and Carlberg M. Port-wine stain – a surgical and psychological problem. Ann. Plastic Surg., 20:512–516 (1988).Google Scholar
  5. 5.
    Barsky SH, Rosen S, Geer DE, and Noe JM. The nature and evolution of port wine stains: A computer assisted study, J. Invest. Dermatol., 74:154–157 (1980).Google Scholar
  6. 6.
    Smoller BR and Rosen S. Port wine stains: A disease of altered neural modulation of blood vessels? Arch. Dermatol., 122:177–179 (1986).Google Scholar
  7. 7.
    Cosman B. Experience in the argon laser therapy of port wine stains. Plast. Reconstr. Surg., 65:119–129 (1980).Google Scholar
  8. 8.
    Noe JM, Barsky SH, Geer DE, and Rosen S. Port wine stains and the response to argon laser therapy: Successful treatment and the predictive role of color, age, and biopsy, Plast. Reconstr. Surg., 65:130–136 (1980).Google Scholar
  9. 9.
    Anderson RR and Parrish JA. Selective photothermolysis – precise microsurgery by selective absorption of pulsed radiation. Science, 220:524–527 (1983).ADSGoogle Scholar
  10. 10.
    Katugampola GA and Lanigan SW. Five years' experience of treating port wine stains with the flashlamp-pumped pulsed dye laser. Br. J. Dermatol., 137:750–754 (1997).Google Scholar
  11. 11.
    van der Horst CMAM, Koster PHL, de Borgie CAJM, Bossuyt PMM, and van Gemert MJC. Effect of the timing of treatment of port-wine stains with the flash-lamp-pumped pulsed dye-laser. New Eng. J. Med., 338:1028–1033 (1998).Google Scholar
  12. 12.
    Geronemus RG and Ashinoff R. The medical necessity of evaluation and treatment of port-wine stains. J. Dermatol. Surg. Oncol., 17:76–79 (1991).Google Scholar
  13. 13.
    Selim MM, Kelly KM, Nelson JS, Wendelschafer-Crabb G, Kennedy WR, and Zelickson BD. Confocal microscopy study of nerves and blood vessels in untreated and treated port wine stains: Preliminary observations. Dermatol. Surg., 30:892–897 (2004).Google Scholar
  14. 14.
    Fiskerstrand EJ, Svaasand LO, Kopstad G, Dalakar M, Norvang LT, and Volden G. Laser treatment of port-wine stains: Therapeutic outcome in relation to morphological parameters, Br. J. Dermatol., 134:1039–1043 (1996).Google Scholar
  15. 15.
    Huikeshoven M, Koster PHL, de Borgie CAJM, Beek JF, van Gemert MJC, and van der Horst CMAM. Redarkening of port-wine stains 10 years after pulsed-dye-laser treatment. New Eng. J. Med., 356:1235–1240 (2007).Google Scholar
  16. 16.
    Chapas AM, Eickhorst K, and Geronemus RG. Efficacy of early treatment of facial port wine stains in newborns: A review of 49 cases, Lasers Surg. Med., 39:563–568 (2007).Google Scholar
  17. 17.
    Renfro L and Geronemus RG. Anatomical differences in the treatment of port wine stains with the pulsed dye laser. Arch Dermatol., 29:182–188 (1993).Google Scholar
  18. 18.
    Anderson RR and Parrish JA. Microvasculature can be selectively damaged using dye lasers: A basic theory and experimental evidence in human skin. Laser Surg Med., 1:263–276 (1981).Google Scholar
  19. 19.
    Hulsbergen Henning JP, van Gemert MJC, and Lahaye CTW. Clinical and histological evaluation of portwine stain treatment with a microsecond-pulsed dye-laser at 577 nm. Laser Surg Med., 4:375–380 (1984).Google Scholar
  20. 20.
    Barton JK, Hammer DX, Pfefer TJ, Lund DJ, Stuck BE, and Welch AJ. Simultaneous irradiation and imaging of blood vessels during pulsed laser delivery. Laser Surg Med., 24:236–243 (1999).Google Scholar
  21. 21.
    Suthamjariya K, Farinelli WA, Koh W, and Anderson RR. Mechanisms of microvascular response to laser pulses. J. Invest. Derm., 122:518–525 (2004).Google Scholar
  22. 22.
    Arndt KA. Treatment techniques in argon-laser therapy – comparison of pulsed and continuous exposures. J. Am. Acad. Dermatol., 11:90–97 (1984).Google Scholar
  23. 23.
    Hohenleutner U, Hilbert M, Wlotzke U, and Landthaler M. Epidermal damage and limited coagulation depth with the flashlamp-pumped pulsed dye laser: A histochemical study. J. Invest. Dermatol., 104:798–802 (1995).Google Scholar
  24. 24.
    Birngruber R, Hillenkamp F, and Gabel VP. Theoretical investigations of laser thermal retinal injury. Health Phys., 48:781–796 (1985).Google Scholar
  25. 25.
    McKenzie AL. Physics of thermal processes in laser-tissue interaction. Phys. Med. Biol., 35:1175–1209 (1990).Google Scholar
  26. 26.
    Anderson RR and Parrish JA. The optics of human skin. J. Invest. Dermatol., 77:13–19 (1981).Google Scholar
  27. 27.
    van Gemert MJC, Jacques SL, Sterenborg HJCM, and Star WM. Skin optics, IEEE Trans. Biomed. Eng., 36:1146–1154 (1989).Google Scholar
  28. 28.
    Keijzer M, Pickering JW, and vanGemert MJC, Laser-beam diameter for port wine stain treatment. Laser Surg. Med., 11:601–605 (1991).Google Scholar
  29. 29.
    Tan OT, Motomedi M, Welch AJ, and Kurban AK. Spotsize effects on guinea pig skin following pulsed irradiation. J. Invest. Dermatol., 90:877–81 (1988).Google Scholar
  30. 30.
    Smithies DJ and Butler PH. Modelling the distribution of laser light in port-wine stains with the Monte Carlo method. Phys. Med. Biol., 40:701–731 (1995).Google Scholar
  31. 31.
    Sivarajan V, Maclaren WM, and Mackay IR. The effect of varying pulse duration, wavelength, spot size, and fluence on the response of previously treated capillary vascular malformations to pulsed-dye laser treatment. Ann. Plast. Surg., 57:25–32 (2006).Google Scholar
  32. 32.
    Kimel S, Svaasand LO, Cao D, Hammer-Wilson MJ, and Nelson JS. Vascular response to laser photothermolysis as a function of pulse duration, vessel type, and diameter: Implications for port wine stain laser therapy. Laser Surg. Med., 30:160 –169 (2002).Google Scholar
  33. 33.
    Jacques SL. Melanosome absorption coefficient. On:, 2003.
  34. 34.
    Saidi IS, Jacques SL, and Tittel FK. Mie and Rayleigh modeling of visible-light scattering in neonatal skin. Appl. Opt., 34:7410–7418 (1995).ADSGoogle Scholar
  35. 35.
    Kampen van EJ, and Zijlstra WG. Determination of hemoglobin and its derivatives. In: H Sobotka, CP Stewart (eds) Advances in clinical chemistry. Academic, New York, pp. 158–187 (1965).Google Scholar
  36. 36.
    van Gemert MJC, Welch AJ, Miller ID, and Tan OT. Can physical modeling lead to an optimal laser treatment strategy for port wine stains? In: ML Wolbrasht (ed) Laser applications in medicine and biology, Vol. 5. Plenum, New York, pp. 199–275 (1991).Google Scholar
  37. 37.
    Kuenster JT and Norris KH. Spectrophotometry of human hemoglobin in the near-infrared region from 1000 to 2500 nm. J. Near Infrared Spectrosc., 2:59–65 (1994).ADSGoogle Scholar
  38. 38.
    Roggan A, Friebel M, Dorschel K, Hahn A, and Muller G. Optical properties of circulating human blood in the wavelength range 400–2500 nm. J. Biomed. Opt., 4:36–46 (1999).ADSGoogle Scholar
  39. 39.
    Faber DJ, Aalders MCG, Mik EG, Hooper BA, van Gemert MJC, and van Leeuwen TG. Oxygen saturation-dependent absorption and scattering of blood. Phys. Rev. Lett., 93:028102 (2004).ADSGoogle Scholar
  40. 40.
    Tan OT, Morrison P, and Kurban AK., 585 nm for the treatment of port-wine stains, Plast. Reconstr. Surg., 86:1112–1117 (1990).Google Scholar
  41. 41.
    Lucassen GW, Verkruysse W, Keijzer M, and van Gemert MJC. Light distributions in a port wine stain model containing multiple cylindrical and curved blood vessels. Laser Surg. Med., 18:345–357 (1996).Google Scholar
  42. 42.
    Verkruysse W, Lucassen GW, de Boer JF, Smithies DJ, Nelson JS, and van Gemert MJC. Modelling light distributions of homogeneous versus discrete absorbers in light irradiated turbid media. Phys. Med. Biol., 42:51–65 (1997).Google Scholar
  43. 43.
    van Gemert MJC, Nelson JS, Milner TE, Smithies DJ, Verkruysse W, de Boer JF, Lucassen GW, Goodman DM, Tanenbaum BS, Norvang LT, and Svaasand LO. Non-invasive determination of port wine stain anatomy and physiology for optimal laser treatment strategies. Phys. Med. Biol., 42:937–950 (1997).Google Scholar
  44. 44.
    Kimel S, Svaasand LO, Hammer-Wilson M, Schell MJ, Milner TE, Nelson JS, and Berns MW. Differential vascular response to laser photothermolysis. J. Invest. Dermatol., 103:693–708 (1994).Google Scholar
  45. 45.
    Svaasand LO, Fiskerstrand EJ, Kopstad G, Norvang LT, Svaasand EK, Nelson JS, and Berns MW. Therapeutic response during pulsed laser treatment of port-wine stains: Dependence on vessel diameter and depth in dermis. Laser Med. Sci., 10:235–243 (1995).Google Scholar
  46. 46.
    Nelson JS, Milner TE, Svaasand LO, and Kimel S. Laser pulse duration must match the estimated thermal relaxation time for successful photothermolysis of blood vessels. Laser Med. Sci., 10:9–12 (1995).Google Scholar
  47. 47.
    Kienle A and Hibst R. A new optimal wavelength for treatment of port wine stains? Phys. Med. Biol., 40:1559–1576 (1995).Google Scholar
  48. 48.
    Choi B, Kang NM, and Nelson JS. Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model. Microvasc. Res., 68:143–146 (2004).Google Scholar
  49. 49.
    Majaron B, Milanič M, and Nelson JS. Interaction of a dual-wavelength laser system with cutaneous blood vessels. In: A Vogel (ed) Therapeutic Laser Applications and Laser-Tissue Interactions III, Proc. SPIE, Vol. 6632, 66320C. Bellingham, WA (2007).ADSGoogle Scholar
  50. 50.
    Choi B, Majaron B, and Nelson JS. Computational model to evaluate port wine stain depth profiling using pulsed photothermal radiometry. J. Biomed. Opt., 9:299–307 (2004).ADSGoogle Scholar
  51. 51.
    van Gemert MJC, Smithies DJ, Verkruysse W, Milner TE, and Nelson JS. Wavelengths for port wine stain laser treatment: Influence of vessel radius and skin anatomy. Phys. Med. Biol., 42:41–50 (1997).Google Scholar
  52. 52.
    Smithies DJ, van Gemert MJC, Hansen MK, Milner TE, and Nelson JS. Three-dimensional reconstruction of port wine stain vascular anatomy from serial histological sections. Phys Med Biol., 42:1843–1847 (1997).Google Scholar
  53. 53.
    Barton JK, Pfefer TJ, Welch AJ, Smithies DJ, Nelson JS, and van Gemert MJC. Optical Monte Carlo modeling of a true port wine stain anatomy. Opt. Express, 2:391–396 (1998).ADSGoogle Scholar
  54. 54.
    Pfefer TJ, Barton JK, Smithies DJ, Milner TE, Nelson JS, van Gemert MJC, and Welch AJ. Modeling laser treatment of port wine stains with a computer-reconstructed biopsy. Laser Surg. Med., 24:151–166 (1999).Google Scholar
  55. 55.
    Raulin C and Greve B. Retrospective clinical comparison of hemangioma treatment by flashlamp-pumped (585 nm) and frequency-doubled Nd:YAG (532 nm) lasers. Laser Surg. Med., 28:40–43 (2001).Google Scholar
  56. 56.
    Chang CJ, Kelly KM, van Gemert MJC, and Nelson JS. Comparing the effectiveness of 585-nm vs., 595-nm wavelength pulsed dye laser treatment of port wine stains in conjunction with cryogen spray cooling. Lasers Surg. Med., 31:352–358 (2002).Google Scholar
  57. 57.
    Greve B and Raulin C. Prospective study of port wine stain treatment with dye laser: Comparison of two wavelengths (585 nm vs 595 nm) and two pulse durations (0.5 milliseconds vs. 20 milliseconds). Laser Surg. Med., 34:168–173 (2004).Google Scholar
  58. 58.
    Scherer K, Lorenz S, Wimmershoff M, Landthaler M, and Hohenleutneret U. Both the flashlamp-pumped dye laser and the long-pulsed tunable dye laser can improve results in port-wine stain therapy. Br. J. Dermatol., 145:79–84 (2001).Google Scholar
  59. 59.
    Kimel S, Svaasand LO, Hammer-Wilson MJ, and Nelson JS. Influence of wavelength on response to laser photothermolysis of blood vessels: Implications for port wine stain laser therapy. Laser Surg. Med., 33:288–295 (2003).Google Scholar
  60. 60.
    Chowdhury MM, Harris S, and Lanigan SW. Potassium titanyl phosphate laser treatment of resistant portwine stains. Br. J. Dermatol., 144:814–817 (2001).Google Scholar
  61. 61.
    Laube S, Taibjee S, and Lanigan SW. Treatment of resistant port wine stains with the V Beam pulsed dye laser. Laser Surg. Med., 33:282–287 (2003).Google Scholar
  62. 62.
    Nakagawa H, Tan OT, and Parrish JA. Ultrastructure changes in human skin after exposure to a pulsed laser. J. Invest. Dermatol., 84:396–400 (1985).Google Scholar
  63. 63.
    Dierickx CC, Casparian JM, Venugopalan V, Farinelli WA, and Anderson RR. Thermal relaxation of port-wine stain vessels probed in vivo: The need for 1–10 millisecond laser pulse treatment. J. Invest. Dermatol., 105:709–714 (1995).Google Scholar
  64. 64.
    Svaasand LO, Milner TE, Anvari B, Norvang LT, Tanenbaum BS, Kimel S, Berns MW, and Nelson JS. Epidermal heating during laser induced photothermolysis of port wine stains: Modeling melanosomal heating after dynamic cooling the skin surface. In: Laser interaction with hard and soft tissue II, Proc. SPIE, Vol. 2323, pp.366–377 (1995).ADSGoogle Scholar
  65. 65.
    deBoer JF, Lucassen GW, Verkruysse W, and van Gemert MJC. Thermolysis of port-wine-stain blood vessels: Diameter of a damaged blood vessel depends on the laser pulse length, Lasers. Med. Sci., 11:177–180 (1996).Google Scholar
  66. 66.
    Pickering JW and van Gemert MJC. 585 nm for the laser treatment of port wine stains: A possible mechanism. Laser Surg. Med., 11:616–618 (1991).Google Scholar
  67. 67.
    Svaasand LO, van Gemert MJC, Verkruysse W, Fiskerstrand EJ, and Norvang LT. Dosimetry for laser treatment of port-wine stains. In: SL Jacques, GJ Mueller, A Roggan, and DH Sliney (eds) Laser-tissue interactionX: Photochemical, photothermal, and photomechanical, Proc. SPIE, Vol. 601, pp. 463–471 (1999).Google Scholar
  68. 68.
    Bernstein EF. Treatment of a resistant port-wine stain with the 1.5-msec pulse duration, tunable, pulsed dye laser. Dermatol. Surg., 26:1007–1009 (2000).Google Scholar
  69. 69.
    Parlette EC, Groff WF, Kinshella MJ, Domankevitz Y, O’Neill J, and Ross EV. Optimal pulse durations for the treatment of leg telangiectasias with a neodymium YAG laser. Laser Surg. Med., 38:98–105 (2006).Google Scholar
  70. 70.
    Goldman MP and Fitzpatrick RE. Treatment of cutaneous vascular lesions. In: MP Goldman and RE Fitzpatrick (eds) Cutaneous laser surgery. Mosby, St. Louis, pp. 19–105 (1994).Google Scholar
  71. 71.
    Lanigan SW. Port-wine stains unresponsive to pulsed dye laser: Explanations and solutions. Br. J. Dermatol., 139:173–177 (1998).Google Scholar
  72. 72.
    Gilchrest BA, Rosen S, and Noe J. Chilling port wine stains improves the response to argon laser therapy. Plast. Reconstr. Surg., 69:278–283 (1982).Google Scholar
  73. 73.
    Welch AJ, Motamedi M, and Gonzalez A. Evaluation of cooling techniques for the protection of the epidermis during Nd:YAG laser irradiation of the skin. In: SN Joffe (ed) Neodymium:YAG laser in medicine and surgery. Elsevier, New York, pp. 196–204 (1983).Google Scholar
  74. 74.
    Nelson JS, Majaron B, and Kelly KM. Active skin cooling in conjunction with laser dermatologic surgery: Methodology and clinical results. Semin. Cutan. Med. Surg., 19:253–266 (2000).Google Scholar
  75. 75.
    Carslaw HS and Jaeger JC. Conduction of heat in solids Clarendon, Oxford, 2nd Edition (1959).Google Scholar
  76. 76.
    Nelson JS, Milner TE, Anvari B, Tanenbaum BS, Kimel S, Svaasand LO, and Jacques SL. Dynamic epidermal cooling during pulsed laser treatment of port-wine stain. Arch. Dermatol., 131:695–700 (1995).Google Scholar
  77. 77.
    Nelson JS, Milner TE, Anvari B, Tanenbaum BS, Svaasand LO, and Kimel S. Dynamic epidermal cooling in conjunction with laser-induced photothermolysis of port wine stain blood vessels. Laser Surg. Med., 19:224–229 (1996).Google Scholar
  78. 78.
    Anvari B, Milner TE, Tanenbaum BS, and Nelson JS. A comparative study of human skin thermal response to sapphire contact and cryogen spray cooling. IEEE Trans. Biomed. Eng., 45:934–941 (1998).Google Scholar
  79. 79.
    Verkruysse W, Majaron B, Aguilar G, Svaasand LO, and Nelson JS. Dynamics of cryogen deposition relative to heat extraction rate during cryogen spray cooling. In: Lasers in surgery: Advanced characterization, therapeutics, and systems X, Proc. SPIE, Vol. 3907, pp. 37–58, Bellingham (2000).Google Scholar
  80. 80.
    Aguilar G, Verkruysse W, Majaron B, Svaasand LO, Lavernia EJ, and Nelson JS. Measurement of heat transfer coefficient during continuous cryogen spray cooling. IEEE J. Sel. Top. Quant. Electr., 7:1013–1021 (2001).Google Scholar
  81. 81.
    Aguilar G, Wang GX, and Nelson JS. Effect of spurt duration on the heat transfer dynamics during cryogen spray cooling. Phys. Med. Biol., 48:2169–2181 (2003).Google Scholar
  82. 82.
    Svaasand LO, Randeberg LL, Aguilar G, Majaron B, Kimel S, Lavernia EJ, and Nelson JS. Cooling efficiency of cryogen spray during laser therapy of skin. Laser Surg. Med., 32:137–142 (2003).Google Scholar
  83. 83.
    Majaron B, Svaasand LO, Aguilar G, and Nelson JS. Intermittent cryogen spray cooling for optimal heat extraction during dermatologic laser treatment, Phys. Med. Biol., 47:3275–3288 (2002).Google Scholar
  84. 84.
    Aguilar G, Majaron B, Pope K, Svaasand LO, Nelson JS, and Lavernia EJ. Influence of nozzle-to-skin distance in cryogen spray cooling for dermatologic laser surgery. Laser Surg. Med., 28:113–120 (2001).Google Scholar
  85. 85.
    Edris A, Choi B, Aguilar G, and Nelson JS. Measurements of laser light attenuation following cryogen spray cooling spurt termination. Laser Surg. Med., 32:143–147 (2003).Google Scholar
  86. 86.
    Majaron B, Kimel S, Verkruysse W, Aguilar G, Pope K, Svaasand LO, Lavernia EJ, and Nelson JS. Cryogen spray cooling in laser dermatology: Effects of ambient humidity and frost formation. Laser Surg. Med., 28:469–476 (2001).Google Scholar
  87. 87.
    Anvari B, Milner TE, Tanenbaum BS, Kimel S, and Nelson JS. Selective cooling of biological tissues: Application for thermally mediated therapeutic procedures. Phys. Med. Biol., 40:241–252 (1995).Google Scholar
  88. 88.
    Altshuler GB, Zenzie HH, Erofeev AV, Smirnov MZ, Anderson RR, and Dierickx C. Contact cooling of the skin. Phys. Med. Biol., 44:1003–1023 (1999).Google Scholar
  89. 89.
    Pope K and Lask G. Epidermal temperature evaluation during dynamic spray cooling, contact cooling, and ice. Presented at the 20th Annual meeting of the ASLMS, Reno, NV, April (2000).Google Scholar
  90. 90.
    Verkruysse W, Majaron B, Tanenbaum BS, and Nelson JS. Optimal cryogen spray cooling parameters for pulsed laser treatment of port wine stains. Laser Surg. Med., 27:165–170 (2000).Google Scholar
  91. 91.
    Chang CJ and Nelson JS. Cryogen spray cooling and higher fluence pulsed dye laser treatment improve port wine stain clearance while minimizing epidermal damage. Dermatol. Surg., 25:767–772 (1999).Google Scholar
  92. 92.
    Waldorf HA, Alster TS, McMillan K, Kauvar ANB, Geronemus RG, and Nelson JS. Effect of dynamic cooling on 585 nm pulsed dye laser treatment of port wine stain birthmarks. Dermatol. Surg., 23:657–662 (1997).Google Scholar
  93. 93.
    Lukač M, Majaron B, and Rupnik T. Ablative and thermal effects of Er:YAG laser on human tissue. In: R Waidelich et al. (eds) Laser in der medizin/in medicine, Proc., 13th Internat. Congress LASER 97. Springer, Berlin, pp. 566–572 (1998).Google Scholar
  94. 94.
    Jia W, Choi B, Franco W, Lotfi J, Majaron B, Aguilar G, and Nelson JS. Treatment of cutaneous vascular lesions using multiple-intermittent cryogen spurts and two-wavelength laser pulses: Numerical and animal studies. Laser Surg. Med., 39:494–503 (2007).Google Scholar
  95. 95.
    Randeberg LL, Bonesronning JH, Dalaker M, Nelson JS, and Svaasand LO, Methemoglobin formation during laser induced photothermolysis of vascular skin lesions. Laser Surg. Med., 34:414–419 (2004).Google Scholar
  96. 96.
    Tanghetti E, Sierra RA, Sherr EA, and Mirkov M. Evaluation of pulse-duration on purpuric threshold using extended pulse pulsed dye laser (Cynosure V-Star). Laser Surg. Med., 31:363–366 (2002).Google Scholar
  97. 97.
    Tanghetti EA, Sherr EA, and Alvarado SL. Multipass treatment of photodamage using the pulse dye laser. Dermatol. Surg., 29:686–691 (2003).Google Scholar
  98. 98.
    Rohrer TE, Chatrath V, and Iyengar V. Does pulse stacking improve the results of treatment with variable-pulse pulsed dye lasers? Dermatol. Surg., 30:163–167 (2004).Google Scholar
  99. 99.
    Ross EV and Domankevitz Y. Laser leg vein treatments: A brief overview. J. Cosmetic Laser Ther., 5:192–197 (2003).Google Scholar
  100. 100.
    Bencini PL. The multilayer technique: A new and fast approach for flashlamp-pumped pulsed (FLPP) dye laser treatment of port-wine stains. Dermatol. Surg., 25:786–789 (1999).Google Scholar
  101. 101.
    Black JF and Barton JK. Chemical and structural changes in blood undergoing laser photocoagulation. Photochem. Photobiol., 80:89–97 (2004).Google Scholar
  102. 102.
    Verkruysse W, Nilsson AMK, Milner TE, Beek JF, Lucassen GW, and van Gemert MJC. Optical absorption of blood depends on temperature during a 0.5 ms laser pulse at 586 nm. Photochem. Photobiol., 67:276–281 (1998).Google Scholar
  103. 103.
    Nilsson AMK, Lucassen GW, Verkryusse W, Andersson-Engels S, and van Gemert MJC. Changes in optical properties of human whole blood in vitro due to slow heating. Photochem. Photobiol., 65:366–373 (1997).Google Scholar
  104. 104.
    Baranov VY, Chekhov DI, Leonov AG, Leonov PG, Ryaboshapka OM, Semenov SY, Splinter R, Svenson RH, and Tatsis GP. Heatpinduced changes in optical properties of human whole blood in vitro. In: Optical diagnostics of biological fluids IV, Proc. SPIE, Vol. 3599, pp.180–187 (1999).ADSGoogle Scholar
  105. 105.
    Mordon S, Rochon P, Dhelin G, and Lesage JC. Dynamics of temperature dependent modifications of blood in the near-infrared. Laser Surg. Med., 37:301–307 (2005).Google Scholar
  106. 106.
    Barton JK, Frangineas G, Pummer H, and Black JF. Cooperative phenomena in two-pulse, two-color laser photocoagulation of cutaneous blood vessels. Photochem. Photobiol., 73:642–650 (2001).Google Scholar
  107. 107.
    Randeberg LL, Daae Hagen AJ, and Svaasand LO. Optical properties of human blood as a function of temperature. Proc. SPIE, 4609:20–29 (2002).Google Scholar
  108. 108.
    Black JF, Wade N, and Barton JK. Mechanistic comparison of blood undergoing laser photocoagulation at 532 and 1,064 nm. Laser Surg. Med., 36:155–165 (2005).Google Scholar
  109. 109.
    Kimel S, Choi B, Svaasand LO, Lotfi J, Viator JA, and Nelson JS. Influence of laser wavelength and pulse duration on gas bubble formation in blood filled glass capillaries. Laser Surg. Med., 36:281–288 (2005).Google Scholar
  110. 110.
    Pikkula BM, Chang DW, Nelson JS, and Anvari B. Comparison of 585 and 595 nm laser-induced vascular response of normal in vivo human skin. Laser Surg. Med., 36:117–123 (2005).Google Scholar
  111. 111.
    Sturesson C and Andersson-Engels S. Mathematical modelling of dynamic cooling and pre-heating, used to increase the depth of selective damage to blood vessels in laser treatment of port wine stains. Phys. Med. Biol., 41:413–428 (1996).Google Scholar
  112. 112.
    Ahčan U, Zorman P, Recek D, Ralca S, and Majaron B. Port wine stain treatment with a dual-wavelength Nd:YAG laser and cryogen spray cooling: A pilot study. Laser Surg. Med., 34:164–167 (2004).Google Scholar
  113. 113.
    Tuchin VV. Optical clearing of tissues and blood using the immersion method. J. Phys. D: Appl. Phys., 38:2497–2518 (2005).ADSGoogle Scholar
  114. 114.
    Tuchin VV. Optical clearing of tissues and blood. SPIE, Bellingham, WA (2005).Google Scholar
  115. 115.
    Tuchin VV, Maksimova IL, Zimnyakov DA, Kon IL, Mavlutov AH, and Mishin AA. Light propagation in tissues with controlled optical properties. J. Biomed. Opt., 2:401–417 (1997).ADSGoogle Scholar
  116. 116.
    Vargas G, Chan EK, Barton JK, Grady HG III, and Welch AJ. Use of an agent to reduce scattering in the skin. Laser Surg. Med., 24:133–141 (1999).Google Scholar
  117. 117.
    Rylander CG, Stumpp OF, Milner TE, Kemp NJ, Mendenhall JM, Diller KR, and Welch AJ. Dehydration mechanism of optical clearing in tissue. J. Biomed. Opt., 11:041117 (2006).ADSGoogle Scholar
  118. 118.
    Yeh AT, Choi B, Nelson JS, and Tromberg BJ. Reversible dissociation of collagen in tissues. J. Invest. Dermatol., 121:1332–1335 (2003).Google Scholar
  119. 119.
    Khan MH, Choi B, Chess S, Kelly KM, McCullough JL, and Nelson JS. Optical clearing of in vivo human skin: Implications for light-based diagnostic imaging and therapeutics. Laser Surg. Med., 34:83–85 (2004).Google Scholar
  120. 120.
    Khan MH, Chess S, Choi B, Kelly KM, and Nelson JS. Can topically applied optical clearing agents increase the epidermal damage threshold and enhance therapeutic efficacy? Laser Surg. Med., 35:93–95 (2004).Google Scholar
  121. 121.
    Sivarajan V and Mackay IR. Noninvasive in vivo assessment of vessel characteristics in capillary vascular malformations exposed to five pulsed dye laser treatments, Plast. Reconstr. Surg., 115:1245–1252 (2005).Google Scholar
  122. 122.
    Zonios G, Bykowski J, and Kollias N. Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy. J. Invest. Dermatol., 117:1452–1457 (2001).Google Scholar
  123. 123.
    Svaasand LO, Norvang LT, Fiskerstrand EJ, Stopps EKS, Berns MW, and Nelson JS. Tissue parameters determining the visual appearance of normal skin and port-wine stains. Laser Med. Sci., 10:55–65 (1995).Google Scholar
  124. 124.
    Verkruysse W, Lucassen GW, and van Gemert MJC. Simulation of color of port wine stain skin and its dependence on skin variables. Laser Surg. Med., 25:131–139 (1999).Google Scholar
  125. 125.
    Rah DK, Kim SC, Lee KH, Park BY, and Kim DW. Objective evaluation of treatment effects on port-wine stains using L*a*b* color coordinates. Plast. Reconstr. Surg., 108:842–847 (2001).Google Scholar
  126. 126.
    Setaro M and Sparavigna A. Quantification of erythema using digital camera and computer-based colour image analysis: A multicentre study. Skin Res. Technol., 8:84–88 (2002).Google Scholar
  127. 127.
    Jung B, Kim CS, Choi B, Kelly KM, and Nelson JS. Use of erythema index imaging for systematic analysis of port wine stain skin response to laser therapy. Laser Surg. Med., 37:186–191 (2005).Google Scholar
  128. 128.
    Takiwaki H, Miyaoka Y, Kohno H, and Arase S. Graphic analysis of the relationship between skin colour change and variations in the amounts of melanin and haemoglobin. Skin Res. Technol., 8:78–83 (2002).Google Scholar
  129. 129.
    Jones SG, Shakespeare PG, and Carruth JAS. Transcutaneous microscopy and argon laser treatment of port wine stains. Lasers Med. Sci., 4:73–78 (1989).Google Scholar
  130. 130.
    Motley R and Lanigan SW. Videomicroscopy predicts outcome in treatment of port-wine stains. Arch. Dermatol., 133:921–922 (1997).Google Scholar
  131. 131.
    Sivarajan V and Mackay IR. The depth measuring videomicroscope (DMV): A non-invasive tool for the assessment of capillary vascular malformations. Laser Surg. Med., 34:193–197 (2004).Google Scholar
  132. 132.
    Chen Z, Milner TE, Dave D, and Nelson JS. Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media. Opt. Lett., 22:64 (1997).ADSGoogle Scholar
  133. 133.
    Izatt JA, Kulkarni MD, Yazdanfar S, Barton JK, and Welch AJ. In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography. Opt. Lett., 22:1439–1441 (1997).ADSGoogle Scholar
  134. 134.
    Zhao YH, Chen ZP, Saxer C, Shen QM, Xiang SH, de Boer JF, and Nelson JS. Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow. Opt. Lett., 25:1358–1360 (2000).ADSGoogle Scholar
  135. 135.
    Nelson JS, Kelly KM, Zhao Y, and Chen Z. Imaging blood flow in human port-wine stain in situ and in real time using optical Doppler tomography. Arch. Dermatol., 137:741–744 (2001).Google Scholar
  136. 136.
    Milner TE, Yazdanfar S, Rollins AM, Izatt JA, Lindmo T, Chen ZP, Nelson JS, and Wang XJ. Doppler optical coherence tomography. In: BE Bouma and GJ Tearney (eds) Handbook of optical coherence tomography. Marcel Decker, New York (2002).Google Scholar
  137. 137.
    Milner TE, Goodman DM, Tanenbaum BS, and Nelson JS. Depth profiling of laser-heated chromophores in biological tissues by pulsed photothermal radiometry. J. Opt. Soc. Am. A, 12:1479–1488 (1995).ADSGoogle Scholar
  138. 138.
    Telenkov SA, Tanenbaum BS, Goodman DM, Nelson JS, and Milner TE. In vivo infrared tomographic imaging of laser-heated blood vessels. IEEE J. Sel. Top. Quant. Elect., 5:1193–1199 (1999).Google Scholar
  139. 139.
    Majaron B, Verkruysse W, Tanenbaum BS, Milner TE, Telenkov SA, Goodman DM, and Nelson JS. Combining two excitation wavelengths for pulsed photothermal profiling of hypervascular lesions in human skin. Phys. Med. Biol., 45:1913–1922 (2000).Google Scholar
  140. 140.
    Choi B, Majaron B, Vargas G, Jung B, Stumpp OF, Kang NM, Kelly KM, Welch AJ, and Nelson JS. In vivo results using photothermal tomography for imaging cutaneous blood vessels. In: T Kundu (ed) Smart nondestructive evaluation and health monitoring of structural and biological systems II, Proc. SPIE, Vol. 5047, pp. 350–361 (2003).Google Scholar
  141. 141.
    Li B, Majaron B, Viator JA, Milner TE, Chen Z, Zhao Y, Ren H, and Nelson JS. Accurate measurement of blood vessel depth in port wine stained human skin in vivo using pulsed photothermal radiometry. J. Biomed. Opt., 9:961–966 (2004).ADSGoogle Scholar
  142. 142.
    Milanič M, Serša I, and Majaron B, Spectrally composite reconstruction approach for improved resolution of pulsed photothermal temperature profiling in water-based samples. Phys. Med. Biol., 54:2829–2844 (2009).Google Scholar
  143. 143.
    Gusev VE and Karabutov AA. Laser optoacoustics, American Institute of Physics, New York (1993).Google Scholar
  144. 144.
    Wang LHV. Ultrasound-mediated biophotonic imaging: A review of acousto-optical tomography and photo-acoustic tomography. Dis. Markers 19:123–138 (2004).Google Scholar
  145. 145.
    Viator JA, Au G, Paltauf G, Jacques SL, Prahl SA, Ren H, Chen Z, and Nelson JS. Clinical testing of a photoacoustic probe for port wine stain depth determination. Laser Surg. Med., 30:141–148 (2002).Google Scholar
  146. 146.
    Kolkman RGM, Hondebrink E, Steenbergen W, and de Mul FFM. In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor. IEEE Sel. Top. Quant. Electr., 9:343–346 (2003).Google Scholar
  147. 147.
    Sebern EL, Brenan CJ, and Hunter IW. Design and characterization of a laser-based instrument with spectroscopic feedback control for treatment of vascular lesions: The “Smart Scalpel”. J. Biomed. Opt., 5:375–382 (2000).ADSGoogle Scholar
  148. 148.
    Nelson JS, McCullough JL, and Berns MW. Principles and applications of photodynamic therapy in dermatology. In: KA Arndt, JE Dover, SA Olbricht (eds) Lasers in cutaneous and aesthetic surgery. Lippincott-Raven, Philadelphia, pp. 349–382 (1997).Google Scholar
  149. 149.
    Orenstein A, Nelson JS, Liaw LH, Kaplan R, Kimel S, and Berns MW. Photochemotherapy of hypervascular dermal lesions: A possible alternative to photothermal therapy? Laser Surg. Med., 10:334–343 (1990).Google Scholar
  150. 150.
    Kimel S, Svaasand LO, Kelly KM, and Nelson JS. Synergistic photodynamic and photothermal treatment of port-wine stain? Laser Surg. Med., 34:80–82 (2004).Google Scholar
  151. 151.
    Kelly KM, Kimel S, Smith T, Stacy A, Hammer-Wilson MJ, Svaasand LO, and Nelson JS. Combined photodynamic and photothermal induced injury enhances damage to in vivo model blood vessels. Laser Surg. Med., 34:407–413 (2004).Google Scholar
  152. 152.
    Smith TK, Choi B, Ramirez-San-Juan J, Nelson JS, Osann K, and Kelly KM. Microvascular blood flow dynamics associated with photodynamic therapy, pulsed dye laser irradiation and combined regimens. Laser Surg. Med., 38:532–539 (2006).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Jožef Stefan InstituteLjubljanaSlovenia
  2. 2.Beckman Laser InstituteUniversity of CaliforniaIrvineUSA

Personalised recommendations