Skip to main content

Optical Coherence Tomography

  • Chapter
  • First Online:
  • 5116 Accesses

Abstract

Seventy percent of our body is made up of water. For that reason, radiation based medical imaging techniques operate in spectral regions where water absorption is low (Fig. 18.1, left panel). Well known modalities are MRI that operates at radio frequencies, and PET/SPECT which work in the high frequency range. Water absorption is also low around the part of the spectrum that is visible to the human eye. In this spectral region, scattering of the light by tissue structures roughly decreases with wavelength. Therefore, most optical imaging techniques such as (confocal) microscopy, optical tomography and Optical Coherence Tomography (OCT) use wavelengths between 650 and 1300 nm to allow reasonable imaging depths.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang E, Hee MR, Flotte T, Gregory K, Puliafito CA, and Fujimoto JG. Optical coherence tomography. Science, 254:1178–1181 (1991).

    Article  ADS  Google Scholar 

  2. Izatt JA, Hee MR, Owen GM, Swanson EA, and Fujimoto JG. Optical coherence microscopy in scattering media. Opt. Lett., 19:590–592 (1994).

    Article  ADS  Google Scholar 

  3. Schmitt JM, Knuettel A, and Yadlowsky M. Confocal microscopy in turbid media. J. Opt. Soc. Am. A, 11(8):2226–2235 (1994).

    Article  ADS  Google Scholar 

  4. van Velthoven MEJ, Faber DJ, Verbraak FD, van Leeuwen TG, and de Smet MD. Recent developments in optical coherence tomography for imaging the retina. Progr. Retinal Eye Res., 26(1):57 (2007).

    Article  Google Scholar 

  5. Nassif N, Cense B, Park BH, Yun SH, Chen TC, Bouma BE, Tearney GJ, and de Boer JF. In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. Opt. Lett., 29:480–482 (2004).

    Article  ADS  Google Scholar 

  6. Izatt JA, Kulkarni MD, Yazdanfar S, Barton JK, and Welch AJ. In vivo bi-directional color Doppler flow imaging of picoliter blood volumes using optical coherence Tomography. Opt. Lett., 22:1439 (1997).

    Article  ADS  Google Scholar 

  7. Aalders MC, Triesscheijn M, Ruevekamp M, de Bruin DM, Baas P, Faber DJ, and Stewart F. (Doppler) optical coherence tomography for monitoring the effect of photodynamic therapy on tissue morpology and perfusion. J. Biomed. Opt., 11(4):044011 (2006).

    Article  ADS  Google Scholar 

  8. Knuettel A, Bonev S, and Knaak W. New method for evaluation of in vivo scattering and refractive index properties obtained with optical coherence tomography. J. Biomed. Opt., 9:265–273 (2004).

    Article  ADS  Google Scholar 

  9. de Boer JF, Milner TE, van Gemert MJC, and Nelson JS. Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence Tomography. Opt. Lett., 22:934 (1997).

    Article  ADS  Google Scholar 

  10. Schmitt JM, Xiang SH, and Yung KM. Differential absorption imaging with optical coherence tomography. J. Opt. Soc. Am. A, 15:2288 (1998).

    Article  ADS  Google Scholar 

  11. Faber DJ, Mik EG, Aalders MCG, and van Leeuwen TG. Light absorption of (oxy-hemoglobin assessed by spectroscopic optical coherence tomography. Opt. Lett., 28(16):1436 (2003).

    Article  ADS  Google Scholar 

  12. Kholodnykh AI, Petrova IY, Motamedi M, and Esenaliev RO. Accurate measurement of total attenuation coefficient of thin tissue with optical coherence tomography. IEEE J. Sel. Top. Quantum Electron., 9:210–221 (2003).

    Article  Google Scholar 

  13. Faber DJ, van der Meer FJ, Aalders MCG, and van Leeuwen TG. Quantitative measurements of attenuation coefficients of weakly scattering media using optical coherence tomography. Opt. Express, 12(19):4353 (2004).

    Article  ADS  Google Scholar 

  14. Faber FJ, Aalders MCG, Mik EG, Hooper BA, van Gemert MJC, and van Leeuwen TG. Oxygen saturation-dependent absorption and scattering of blood. Phys. Rev. Lett., 93(2):028102-1 (2004).

    Article  ADS  Google Scholar 

  15. Faber DJ, Mik EG, Aalders MCG, and van Leeuwen TG. Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography. Opt. Lett., 30(9):1015 (2005).

    Article  ADS  Google Scholar 

  16. Sorin RV and Baney DM. A simple intensity noise reduction technique for optical low coherence reflectrometry. IEEE Photonics Techn. Lett., 4:1404 (1992).

    Article  ADS  Google Scholar 

  17. Rollins AM and Izatt JA. Optimal interferometer designs for optical coherence tomography. Opt. Lett., 24:1484 (1999).

    Article  ADS  Google Scholar 

  18. Podoleanou AG. Unbalanced versus balanced operation in an optical coherence tomography system. Appl. Opt., 39:173 (2000).

    Article  ADS  Google Scholar 

  19. Leitgeb R, Hitzenberger CK, and Fercher AF. Performance of fourier domain vs. time domain optical coherence tomography. Opt. Express, 11(8):889–894 (2003).

    Article  ADS  Google Scholar 

  20. de Boer JF, Cense B, Park BH, Pierce MC, Tearney GJ, and Bouma BE. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt. Lett., 28(21):2067 (2003).

    Article  ADS  Google Scholar 

  21. Choma MA, Sarunic MV, Yang CH, and Izatt JA. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt. Express, 11:2183 (2003).

    Article  ADS  Google Scholar 

  22. Kodach V, Faber DJ, and van Leeuwen TG. Wavelength swept Ti:sapphire laser. Opt. Commun., 281(19):4975–4978 (2008).

    Article  ADS  Google Scholar 

  23. Yun S, Tearney G, de Boer JF, Iftimia N, and Bouma B. High-speed optical frequency-domain imaging. Opt. Express, 11(22):2953 (2003).

    Article  ADS  Google Scholar 

  24. van Leeuwen TG, Faber DJ, and Aalders MC. Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography. IEEE J. Sel. Top. Quant. Electron., 9(2):227 (2003).

    Article  Google Scholar 

  25. Yuan S and Riza NA. General formula for coupling-loss characterization of single-mode fiber collimators by use of gradient-index rod lenses. Appl. Opt., 38(15):3214–3222 (1999).

    Article  ADS  Google Scholar 

  26. de Grauw CJ, Sijtsema NM, Otto C, and Greve J. Axial resolution of confocal Raman microscopes: Gaussian beam theory and practice. J. Microsc., 188:273–279 (1997).

    Article  Google Scholar 

  27. van der Hulst HC. Light scattering by small particles. Dover, New York (1957).

    Google Scholar 

  28. Thrane L, Yura HT, and Andersen PE. Analysis of optical coherence tomography systems based on the extended HuygensFresnel principle. J. Opt. Soc. Am. A, 17:484–490 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  29. Yura HT, Thrane L, and Andersen PE. Closed-from solution for the Wigner phase-space distribution function for diffuse reflection and small-angle scattering in a random medium. J. Opt. Soc. Am. A, 17(12):2464–2474 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  30. Yadlowsky MJ, Schmitt JM, and Bonner RF. Multiple scattering in optical coherence microscopy. Appl. Opt., 34(25):5699–5707 (1995).

    Article  ADS  Google Scholar 

  31. Pan Y, Birngruber R, and Engelhard R. Constrast limits of coherence-gated imaging in scattering media. Appl. Opt., 36(13):2979–2983 (1997).

    Article  ADS  Google Scholar 

  32. Bizheva KK, Siegel AM, and Boas DA. Path-length-resolved dynamic light scattering in highly scattering random media: The transition to diffusing wave spectroscopy. Phys. Rev. E, 58(6):7664–7667 (1998).

    Article  ADS  Google Scholar 

  33. Thrane L, Yura HT, and Andersen PE. Analysis of optical coherence tomography systems based on the extended HuygensFresnel principle. J. Opt. Soc. Am. A, 17:484–490 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  34. Wax A, Yang C, Dasari RR, and Feld M. Path-length-resolved dynamic light scattering: Modeling the transition from single to diffusive scattering. Appl. Opt., 40(24):4222–4227 (2001).

    Article  ADS  Google Scholar 

  35. Karamata B, Laubscher M, Leutenegger M, Bourquin S, Lasser T, and Lambelet P. Multiple scattering in optical coherence tomography. I. Investigation and modeling. J. Opt. Soc. Am. A, 22(7):1369 (2005).

    Article  ADS  Google Scholar 

  36. Turchin IV, Sergeeva EA, Dolin LS, Kamensky VA, Shakova NM, and Richards-Kortum R. Novel algorithm of processing optical coherence tomography images for differentiation of biological tissue pathologies. J. Biomed. Opt., 10(6):064024 (2005).

    Article  ADS  Google Scholar 

  37. Çilesiz I, Fockens P, Kerindongo R, Faber DJ, Tytgat ten Kate F, and van Leeuwen TG. Comparative optical coherence tomography imaging of human esophagus: How accurate is localization of the muscularis mucosae. Gastrointest. Endosc., 56(6):852–857 (2002).

    Article  Google Scholar 

  38. van der Meer FJ, Faber DJ, Baraznji Sassoon DM, Aalders MC, Pasterkamp G, and van Leeuwen TG. Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography. IEEE Trans. Med. Imaging, 24(10):1369–1376 (2005).

    Article  Google Scholar 

  39. van der Meer FJ, Faber DJ, Peree J, Pasterkamp G, Baraznji Sassoon DMB, and van Leeuwen TG. Quantitative optical coherence tomography of arterial wall components. Lasers Med. Sci., 20(1):45–51 (2005).

    Article  Google Scholar 

  40. Schmitt JM, Knuttel A, Yadlowsky M, and Eckhaus MA. Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering. Phys. Med. Biol., 39:1705–1720 (1994).

    Article  Google Scholar 

  41. Levitz D, Thrane L, Frosz MH, Andersen PE, Andersen CB, Andersson-Engels S, Valanciunaite J, Swartling J, and Hansen PR. Determination of optical scattering properties of highly-scattering media in optical coherence tomography images. Opt. Express, 12:249–259 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk J. Faber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Faber, D.J., van Leeuwen, T.G. (2010). Optical Coherence Tomography. In: Welch, A., van Gemert, M. (eds) Optical-Thermal Response of Laser-Irradiated Tissue. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8831-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-8831-4_18

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8830-7

  • Online ISBN: 978-90-481-8831-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics