Skip to main content

Optical Fiber Sensors for Biomedical Applications

  • Chapter
  • First Online:
Optical-Thermal Response of Laser-Irradiated Tissue

Abstract

Optical fiber technology offers a convenient, affordable, safe and effective approach for the delivery and collection of light to and from the tissue region of interest, and has been employed clinically since the 1960s [1]. This chapter discusses and reviews the recent developments in optical fiber sensor technology in the field of biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kapany NS. Fiber optics. Principles and applications. Academic, New York (1967).

    Google Scholar 

  2. Utzinger U and Richards-Kortum RR. Fiber optic probes for biomedical optical spectroscopy. J. Biomed. Opt., 8(1):121–147 (2003).

    Article  ADS  Google Scholar 

  3. Verdaasdonk RM and Borst C. Optics of fiber and fiber probes. In: AJ Welch and MJC van Gemert (eds) Optical-thermal response of laser-irradiated tissue. Plenum, New York, pp. 619–666 (1995).

    Google Scholar 

  4. Polymicro Technologies Catalog, http://www.polymicro.com/catalog/2_8.htm (2009).

  5. Chin LC, Wilson BC, Whelan WM, and Vitkin IA. Radiance-based monitoring of the extent of tissue coagulation during laser interstitial thermal therapy. Opt. Lett., 29(9):959–961 (2004).

    Article  ADS  Google Scholar 

  6. Dickey DJ, Moore RB, Rayner DC, and Tulip J. Light dosimetry using the P3 approximation. Phys. Med. Biol., 46(9):2359–2370 (2001).

    Article  Google Scholar 

  7. Farrell TJ, Patterson MS, and Wilson BC. A diffusion theory model of spatially, resolved, steady-state diffuse reflectance for the non-invasive determination of tissue optical properties in vivo. Med. Phys., 19:879–888 (1992).

    Article  Google Scholar 

  8. Hull EL, Nichols MG, and Foster TH. Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes. Phys. Med. Biol., 43(11):3381–3404 (1998).

    Article  Google Scholar 

  9. Wang L and Jacques SL. Use of a laser beam with an oblique angle of incidence to measure the reduced scattering coefficient of a medium. Appl. Opt., 34(13):2362–2366 (1995).

    Article  ADS  Google Scholar 

  10. Nichols MG, Hull EL, and Foster TH. Design and testing of a white-light, steady-state reflectance spectrometer for determination of optical properties of highly scattering systems. Appl. Opt., 36(1):93–104 (1997).

    Article  ADS  Google Scholar 

  11. Fuchs H, Utzinger U, Zuluaga F, Gillenwater R, Jacob R, Kemp B, and Richards-Kortum R. Combined fluorescence and reflectance spectroscopy: in vivo assessment of oral cavity epithelial neoplasia. Porc. CLEO, 6:306–307 (1998).

    Google Scholar 

  12. Patterson MS, Andersson-Engels S, Wilson BC, and Osei EK. Absorption spectroscopy in tissue-simulating materials: a theoretical and experimental study of photon paths. Appl. Opt., 34(1):22–30 (1995).

    Article  ADS  Google Scholar 

  13. Farrell TJ, Patterson MS, and Wilson B. A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo. Med. Phys., 19(4):879–888 (1992).

    Article  Google Scholar 

  14. Finlay JC and Foster TH. Hemoglobin oxygen saturations in phantoms and in vivo from measurements of steady-state diffuse reflectance at a single, short source-detector separation. Med. Phys., 31(7):1949–1959 (2004).

    Article  Google Scholar 

  15. Seo I, Hayakawa CK, and Venugopalan V. Radiative transport in the delta-P1 approximation for semi-infinite turbid media. Med. Phys., 35(2):681–693 (2008).

    Article  Google Scholar 

  16. Kienle A and Patterson MS. Determination of the optical properties of turbid media from a single Monte Carlo simulation. Phys. Med. Biol., 41(10):2221–2227 (1996).

    Article  Google Scholar 

  17. Kim AD, Hayakawa C, and Venugopalan V. Estimating optical properties in layered tissues by use of the Born approximation of the radiative transport equation. Opt. Lett., 31(8):1088–1090 (2006).

    Article  ADS  Google Scholar 

  18. Pfefer TJ, Matchette LS, Bennett CL, Gall JA, Wilke JN, Durkin AJ, and Ediger MN. Reflectance-based determination of optical properties in highly attenuating tissue. J. Biomed. Opt., 8(2):206–215 (2003).

    Article  ADS  Google Scholar 

  19. Alexandrakis G, Farrell TJ, and Patterson MS. Monte carlo diffusion hybrid model for photon migration in a two-layer turbid medium in the frequency domain. Appl. Opt., 39(13):2235–2244 (2000).

    Article  ADS  Google Scholar 

  20. Seo I, You JS, Hayakawa CK, and Venugopalan V. Perturbation and differential Monte Carlo methods for measurement of optical properties in a layered epithelial tissue model. J. Biomed. Opt., 12(1):014030 (2007).

    Article  ADS  Google Scholar 

  21. Mourant JR, Bigio IJ, Jack DA, Johnson TM, and Miller HD. Measuring absorption coefficients in small volumes of highly scattering media: Source-detector separations for which path lengths do not depend on scattering properties. Appl. Opt., 36(22):5655–5661 (1997).

    Article  ADS  Google Scholar 

  22. Kumar G and Schmitt JM. Optimal probe geometry for near-infrared spectroscopy of biological tissue. Appl. Opt., 36(10):2286–2293 (1997).

    Article  ADS  Google Scholar 

  23. Amelink A, Kaspers OP, Sterenborg HJ, van der Wal JE, Roodenburg JL, and Witjes MJ. Non-invasive measurement of the morphology and physiology of oral mucosa by use of optical spectroscopy. Oral. Oncol., 44(1):65–71 (2008).

    Article  Google Scholar 

  24. Van de Hulst HC. Light scattering by small particles. Dover, New York (1957).

    Google Scholar 

  25. van Veen RL, Amelink A, Menke-Pluymers M, van der Pol C, and Sterenborg HJ. Optical biopsy of breast tissue using differential path-length spectroscopy. Phys. Med. Biol., 50(11):2573–2581 (2005).

    Article  Google Scholar 

  26. Amelink A, OP Kaspers, HJCM Sterenborg, JE van der Wal, JLN Roodenburg, and MJH Witjes. Non-invasive measurement of the morphology and physiology of oral mucosa by use of optical spectroscopy. Oral Oncol., 44:65–71 (2008).

    Article  Google Scholar 

  27. Kruijt B, de Bruijn HS, van der Ploeg-van den Heuvel A, de Bruin RW, Sterenborg HJ, Amelink A, and Robinson DJ. Monitoring ALA-induced PpIX photodynamic therapy in the rat esophagus using fluorescence and reflectance spectroscopy. Photochem. Photobiol., 6:1515–1527 (2008).

    Article  Google Scholar 

  28. Wang AMJ, Bender JE, Pfefer J, Utzinger U, and Drezek RA. Depth-sensitive reflectance measurements using obliquely oriented fiber probes. J. Biomed. Opt., 10(4):044017 (2005).

    Article  ADS  Google Scholar 

  29. Arifler D, Schwarz RA, Chang SK, and Richards-Kortum R. Reflectance spectroscopy for diagnosis of epithelial precancer: model-based analysis of fiber-optic probe designs to resolve spectral information from epithelium and stroma. Appl. Opt., 44(20):4291–4305 (2005).

    Article  ADS  Google Scholar 

  30. Nieman L, Myakov A, Aaron J, and Sokolov K. Optical sectioning using a fiber probe with an angled illumination-collection geometry: evaluation in engineered tissue phantom. Appl. Opt., 43:1308–1319 (2004).

    Article  ADS  Google Scholar 

  31. Skala M, Palmer G, Zhu C, Liu Q, Vrotsos K, Marshek-Stone C, Gendron-Fitzpatrick A, and Ramanujam N. Investigation of the fiber-optic probe designs for optical spectroscopic diagnosis of epithelial pre-cancers. Lasers Surg. Med., 34:25–38 (2004).

    Article  Google Scholar 

  32. Schwarz RA, Arifler D, Chang SK, Pavlova I, Hussain IA, Mack V, Knight B, Richards-Kortum R, and Gillenwater AM. Ball lens coupled fiber-optic probe for depth-resolved spectroscopy of epithelial tissue. Opt. Lett., 30(10):1159–1161 (2005).

    Article  ADS  Google Scholar 

  33. Schwarz RA, Gao W, Daye D, Williams MD, Richards-Kortum R, and Gillenwater AM. Autofluorescence and diffuse reflectance spectroscopy of oral epithelial tissue using a depth-sensitive fiber-optic probe. Appl. Opt., 47(6):825–834 (2008).

    Article  ADS  Google Scholar 

  34. Johnson T and Mourant J. Polarized wavelength-dependent measurements of turbid media. Opt. Express, 4(6):200–216 (1999).

    Article  ADS  Google Scholar 

  35. Myakov A, Nieman L, Wicky L, Utzinger U, Richards-Kortum R, and Sokolov K. Fiber optic probe for polarized reflectance spectroscopy in vivo: design and performance. J. Biomed. Opt., 7(3):388–397 (2002).

    Article  ADS  Google Scholar 

  36. Groner W, Winkelman JW, Harris AG, Ince C, Bouma GJ, Messmer K, and Nadeau RG. Orthogonal polarization spectral imaging: a new method for study of the microcirculation. Nat. Med., 5(10):1209–1213 (1999).

    Article  Google Scholar 

  37. De Jode ML. Monte Carlo simulations of the use of isotropic light dosimetry probes to monitor energy fluence in biological tissues. Phys. Med. Biol., 44:3207–3237 (1999).

    Article  Google Scholar 

  38. Henderson B. An isotropic dosimetry probe for monitoring light in tissue, theoretical and experimental measurement. Ph.D. Thesis, Heriot Watt University, Edinburgh (1991).

    Google Scholar 

  39. Marijnissen JP, Star WM. Calibration of isotropic light dosimetry probes based on scattering bulbs in clear media. Phys. Med. Biol., 41(7):1191–1208 (1996).

    Article  Google Scholar 

  40. Marijnissen JP and Star WM. Performance of isotropic light dosimetry probes based on scattering bulbs in turbid media. Phys. Med. Biol., 47(12):2049–2058 (2002).

    Article  Google Scholar 

  41. Lilge L, Haw T, and Wilson BC. Miniature isotropic optical fibre probes for quantitative light dosimetry in tissue. Phys. Med. Biol., 38(2):215–230 (1993).

    Article  Google Scholar 

  42. Dimofte A, Finlay JC, and Zhu TC. A method for determination of the absorption and scattering properties interstitially in turbid media. Phys. Med. Biol., 50(10):2291–2311 (2005).

    Article  Google Scholar 

  43. Pomerleau-Dalcourt N and Lilge L. Development and characterization of multi-sensory fluence rate probes. Phys. Med. Biol., 51(7):1929–1940 (2006).

    Article  Google Scholar 

  44. Richards-Kortum R. Fluorescence spectroscopy of turbid media. In: AJ Welch and MJC van Gemert (eds) Optical thermal response of laser-irradiated tissue. Plenum, New York, pp. 667–706 (1995).

    Google Scholar 

  45. Zhu C, Liu Quan, Ramanujam N. Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation. J. Biomed. Opt., 8(2), 237–247 (2003).

    Article  ADS  Google Scholar 

  46. Trujillo EV, Sandison DR, Utzinger U, Ramanujam N, Mitchell MF, and Richard-Kortum R. Method to determine tissue fluorescence efficiency in vivo and predict signal-to-noise for spectrometers. Appl. Spectrosc., 52(7):943–995 (1998).

    Article  ADS  Google Scholar 

  47. Pope K, Warren S, Yazdi Y, Johnston J, David M, and Richard-Kortum R. Dual imaging of arterial walls: intravascular ultrasound and fluorescence spectroscopy. Proc. SPIE, 1878:42–50 (1993).

    Article  ADS  Google Scholar 

  48. Pfefer TJ, Schomacker KT, Ediger MN, and Nishioka NS. Multiple-fiber probe design for fluorescence spectroscopy in tissue. Appl. Opt., 41(22):4712–4721 (2002).

    Article  ADS  Google Scholar 

  49. Keijzer M, Richards-Kortum R, Jacques SL, and Feld MS. Fluorescence spectroscopy of turbid media: Autofluorescence of the human aorta. Appl. Opt., 28:4286–4292 (1989).

    Article  ADS  Google Scholar 

  50. Avrillier S, Tinet D, Ettori D, Tualle JM, and Gelebart B. Influence of the emission reception geometry in laser-induced fluorescence spectra from turbid media. Appl. Opt., 37:2781–2787 (1998).

    Article  ADS  Google Scholar 

  51. Gardner CM, Jacques SL, Welch AJ. Fluorescence spectroscopy of tissue: Recovery of intrinsic fluorescence from measured fluorescence. Appl. Opt., 35:1780–1792 (1996).

    Article  ADS  Google Scholar 

  52. Gardner CM, Jacques SL, Welch AJ. Light transport in tissue: accurate expressions for one-dimensional fluence rate and escape function based upon Monte Carlo simulation. Lasers Surg. Med., 18:129–138 (1996).

    Article  Google Scholar 

  53. Durkin AJ, Richards-Kortum R. Comparison of methods to determine chromophore concentrations from fluorescence spectra of turbid samples. Lasers Surg. Med., 19:75–89 (1996).

    Article  Google Scholar 

  54. Finlay JC, Conover DL, Hull EL, Foster TH. Porphyrin bleaching and PDT-induced spectral changes are irradiance dependent in ALA-sensitized normal rat skin in vivo. Photochem. Photobiol., 73:54–63 (2001).

    Article  Google Scholar 

  55. Wu J, Feld MS, and Rava R. Analytical model for extracting intrinsic fluorescence in turbid media. Appl. Opt., 32:3583–3595 (1993).

    ADS  Google Scholar 

  56. Finlay JC and Foster TH. Recovery of hemoglobin oxygen saturation and intrinsic fluorescence with a forward-adjoint model. Appl. Opt., 44(10):1917–1933 (2005).

    Article  ADS  Google Scholar 

  57. Tearney GJ, Brezinski ME, Bouma BE, Boppart SA, Pitris C, Southern JF, and Fujimoto JG. In vivo endoscopic optical biopsy with optical coherence tomography. Science, 276:2037–2039 (1997).

    Article  Google Scholar 

  58. Kawasaki M, Bouma B, Bressner J, Houser S, Nadkarni S, MacNeill B, Jang I, Fujiwara H, and Tearney G. Diagnostic accuracy of optical coherence tomography and integrated backscatter intravascular ultrasound images for tissue characterization of human coronary plaques. J. Am. Coll. Cardiol., 48:81–88 (2006).

    Article  Google Scholar 

  59. Yang SJ, Marcon N, Gardiner G, Qi B, Bisland S, Seng-Yue E, Lo S, Pekar J, Wilson B, and Vitkin I. High speed, wide velocity dynamic range Doppler optical coherence tomography (Part III): in vivo endoscopic imaging of blood flow in the rat and human gastrointestinal tracts. Opt. Express, 11(19):2416–2424 (2003).

    Article  ADS  Google Scholar 

  60. Yang VX, Mao YX, Munce N, Standish B, Kucharczyk W, Marcon NE, Wilson BC, and Vitkin IA. Interstitial Doppler optical coherence tomography. Opt. Lett., 30(14):1791–1793 (2005).

    Article  ADS  Google Scholar 

  61. Li H, Standish BA, Mariampillai A, Munce NR, Mao Y, Chiu S, Marcon NE, Wilson BC, Vitkin A, and Yang VX. Feasibility of interstitial Doppler optical coherence tomography for in vivo detection of microvascular changes during photodynamic therapy. Lasers Surg. Med., 38(8):754–761 (2006).

    Article  Google Scholar 

  62. Standish BA, Lee KK, Jin X, Mariampillai A, Munce NR, Wood MF, Wilson BC, Vitkin IA, and Yang VX. Interstitial Doppler optical coherence tomography as a local tumor necrosis predictor in photodynamic therapy of prostatic carcinoma: An in vivo study. Cancer Res., 68(23):9987–9995 (2008).

    Article  Google Scholar 

  63. De Jong BWD, Schut TCB, Wolffenbuttel KP, Nijman JM, Kok DJ, and Puppels GJ. Identification of bladder wall layers by Raman spectroscopy. J. Urol., 168:1771–1778 (2002).

    Article  Google Scholar 

  64. Notingher I, Verrier S, Romanska H, Bishop AE, Polak JM, and Hench LL. In situ characterization of living cells by Raman spectroscopy. Spectroscopy, 16:43–51 (2002).

    Google Scholar 

  65. Mahadevan-Jansen A and Richards-Kortum R. Raman spectroscopy for the detection of cancers and precancers. J. Biomed. Opt., 1:31–70 (1996).

    Article  ADS  Google Scholar 

  66. Haka AS, Shafer-Peltier KE, Fitzmaurice M, Crowe J, Dasari RR, and Feld MS. Diagnosing breast cancer by using Raman spectroscopy. Proc. Natl. Acad. Sci. U.S.A., 102:12371–12376 (2005).

    Article  ADS  Google Scholar 

  67. Haka AVolynskaya, Z, Gardecki J, Nazemi J, Lyons J, Hicks D, Fitzmaurice M, Dasri R, Crowe J, and Felds M. In vivo margin assessment during partial mastectomy breast surgery using Raman spectroscopy. Cancer Res., 66:3317–3322 (2006).

    Article  Google Scholar 

  68. Santos LF, Wolthuis R, Koljenović S, Almeida RM, and Puppels GJ. Fiber-optic probes for in vivo Raman spectroscopy in the high-wavenumber region. Anal. Chem., 77(20):6747–6752 (2005).

    Article  Google Scholar 

  69. Short M, Lam S, McWilliams A, Zhao J, and Lui Hand Zeng H. Development and prelimninary results of an endoscopic probe for potential in vivo diagnosis of lung cancers. Opt. Lett., 33:711–713 (2008).

    Article  ADS  Google Scholar 

  70. Schulmerich MV, Dooley KA, Morris MD, Vanasse TM, and Goldstein SA. Transcutaneous fiber optic raman spectroscoopy of bone using annular illumination and a circular array of collection fibers. J. Biomed. Opt., 11(6):060502 (2006).

    Article  ADS  Google Scholar 

  71. Molckovsky A, Wong Kee Song LM, Shim MG, Marcon NE, and Wilson BC. Diagnostic potetnial of near infrared Raman spectroscopy of the colon: Differentiating adenomatous from hyperplastic polyps. Gastrointestinal Endosc., 57:396–402 (2003).

    Article  Google Scholar 

  72. Mahadevan-Jansen A, Mitchell MF, Ramanujam N, Utzinger U, and Richards-Kortum R. Development of a fiber optic probe to measure NIR Raman spectra of cervical tissue in vivo. Photochem. Photobiol., 683:427–431 (1998).

    Article  Google Scholar 

  73. Robichaux-Viehoever A, Kanter E, Shappell H, Billheimer D, Jones H III, and Mahadevan-Jansen A. Characterization of Raman spectra measured in vivo for the detection of cervical dysplasia. Appl. Spectrosc., 61(9):986–993 (2007).

    Article  ADS  Google Scholar 

  74. Victor XD, Tang YS, Gordon ML, Qi B, Gardiner G, Cirocco M, Kortan P, Haber GB, Kandel G, Vitkin IA, Wilson BC, and Marcon NE, Endoscopic Doppler optical coherence tomography in the human GI tract: Initial experience. GI Endosc., 61(7):879–890 (2005).

    Google Scholar 

Download references

Acknowledgement

The authors would like to thank Dr. Richard Schwarz from the Richards-Kortum lab at The University of Texas at Austin for providing the derivation of the ball-lens equation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee C.L. Chin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Chin, L.C., Whelan, W.M., Vitkin, I.A. (2010). Optical Fiber Sensors for Biomedical Applications. In: Welch, A., van Gemert, M. (eds) Optical-Thermal Response of Laser-Irradiated Tissue. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8831-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-8831-4_17

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8830-7

  • Online ISBN: 978-90-481-8831-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics