Advertisement

Electro-Optical Effects in Cholesteric Phase

  • Lev M. Blinov
Chapter

Abstract

A cholesteric forms a helical structure and its optical properties are characterised by the tensor of dielectric permittivity rotating in space. We are already familiar with the form of the cholesteric tensor (see Section 4.7). It was Oseen [1] who suggested the first quantitative model of the helical cholesteric phase as a periodic medium with local anisotropy and very specific optical properties. First we shall discuss more carefully the Bragg reflection from the so-called “cholesteric planes”.

Keywords

Helical Structure Refraction Index Free Energy Density Cholesteric Liquid Crystal Cell Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Oseen, C.W.: The theory of liquid crystals. Trans. Faraday Soc. 29, 883–899 (1933)CrossRefGoogle Scholar
  2. 2.
    de Gennes, P.G., Prost, J.: The Physics of Liquid Crystals, 2nd edn. Oxford Science Publications, Oxford (1995)Google Scholar
  3. 3.
    Belyakov, V.A.: Diffraction Optics of Complex-Structured Periodic media. Springer-Verlag, New York (1992)Google Scholar
  4. 4.
    Bendikson, J.M., Dowling, J.P., Scalora, M.: Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structure. Phys. Rev. E 53, 4107–4121 (1996)CrossRefADSGoogle Scholar
  5. 5.
    Palto, S.P.: Algorithm for solution of optical problem for lamellar anisotropic media. Zh. Eksp. Teor Fiz. 119, 638–648 (2001) [JETP 103, 469 (2006)]Google Scholar
  6. 6.
    De Vries, Hl: Rotatory power and optical properties of certain liquid crystal. Acta Cryst. 4, 219–226 (1951)CrossRefGoogle Scholar
  7. 7.
    Kats, E.I.: Optical properties of cholesteric liquid crystals. Zh. Eksp. Teor Fiz. 59, 1854–1856 (1970) [JETP 32, 1004 (1971]Google Scholar
  8. 8.
    Joannopoulos, J.D., Meade, R.D., Winn, J.N.: Photonic Crystals: Molding the Flow of Light. Princeton University Press, Princeton (1995)zbMATHGoogle Scholar
  9. 9.
    Mauguin, C.: Sur les cristaux liquides de Lehman. Bull. Soc. Fr. Miner. 34, 71–117 (1911)Google Scholar
  10. 10.
    Chilaya, G., Hauk, G., Koswig, H.D., Sikharulidze, D.: Electric-field controlled color effect in cholesteric liquid crystals and polymer-dispersed cholesteric liquid crystals. J. Appl. Phys. 80, 1907–1909 (1996)CrossRefADSGoogle Scholar
  11. 11.
    Fergason, J.L.: Liquid crystals in nondestructive testing. Appl. Optics 7, 1729–1737 (1968)CrossRefADSGoogle Scholar
  12. 12.
    De Gennes, P.-G.: Calcul de la distorsion d’une structure cholesteric par un champ magnetic. Sol. State Comms. 6, 163–165 (1968)CrossRefADSGoogle Scholar
  13. 13.
    Meyer, R.B.: Effect of electric and magnetic field on the structure of cholesteric liquid crystals. Appl. Phys. Lett. 12, 281–282 (1968)CrossRefADSGoogle Scholar
  14. 14.
    Meyer, R.B.: Distortion of a cholesteric structure by a magnetic field. Appl. Phys. Lett. 14, 208–209 (1969)CrossRefADSGoogle Scholar
  15. 15.
    Blinov, L.M., Palto, S.P.: Cholesteric helix: topological problem, photonics and electro-optics. Liq. Cryst. 36, 1037–1045 (2009)CrossRefGoogle Scholar
  16. 16.
    Blinov, L.M., Belyayev, S.V., Kizel’, V.A.: High-order reflections from a cholesteric helix induced by an electric field. Phys. Lett. 65A, 33–35 (1978)ADSGoogle Scholar
  17. 17.
    Helfrich, W.: Deformation of cholesteric liquid crystals with low threshold voltage. Appl. Phys. Lett. 17, 531–532 (1970)CrossRefADSGoogle Scholar
  18. 18.
    Chandrasekhar, S.: Liquid Crystals. Cambridge University Press, Cambridge (1977)Google Scholar
  19. 19.
    Blinov, L.M.: Electro-Optical and Magneto-Optical Properties of Liquid Crystals. Wiley, Chichester (1983). Chapter 6Google Scholar
  20. 20.
    Berreman, D.W., Heffner, W.R.: New bistable liquid-crystal twist cell. J. Appl. Phys. 52, 3032–3039 (1981)CrossRefADSGoogle Scholar
  21. 21.
    Palto, S.P., Barnik, M.I.: Bistable switching of nematic liquid crystal layers with ground 2π-state. Zh. Eksp. Teor. Fiz. 127, 220–229 (2005)Google Scholar
  22. 22.
    Barberi, R., Durand, G.: Controlled textural bistability in nematic liquid crystals. In: Collings, P.J., Patel, J.S. (eds.) Handbook of Liquid Crystal Research, pp. 567–589. Oxford University Press, New York (1997). Chapter XVGoogle Scholar
  23. 23.
    Joubert, C., Angele, J., Boissier, A., Pecout, B., Forget, S.L., Dozov, I., Stoenescu, D., Lallemand, S., Lagarde, P.M.: Reflective bistable nematic displays (BiNem®) fabricated by standard manufacturing equipment. J. SID 11, 17–24 (2003)Google Scholar
  24. 24.
    Patel, J.S., Meyer, R.B.: Flexoelectric Electro-optics of a Cholesteric Liquid Crystal. Phys. Rev. Lett. 58, 1538–1540 (1987)CrossRefADSGoogle Scholar
  25. 25.
    Patel, J.S., Lee, S.-D.: Fast linear effect based on cholesteric liquid crystals. J. Appl. Phys. 66, 1879–1881 (1989)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Russian Academy of Sciences Inst. CrystallographyMoscowRussia

Personalised recommendations