Liquid Crystal – Solid Interface

  • Lev M. Blinov


Now we are interested in phenomena at an interface between a liquid crystal and another phase (gas, liquid or solid) [1, 2]. Why is it important? First, the structure of a liquid crystal in a thin interfacial layer is different from that in the bulk and manifests many novel features. Second, the interface plays a decisive role in applications, because liquid crystals are always used in a confined geometry. There are two approaches to the surface problems, microscopic and macroscopic. In the first approach, we are interested in a structure and properties of interfacial liquid crystal layers at the molecular level; in the second one, we ignore the microscopic details and use only symmetry properties and the concept of the director.


Liquid Crystal Nematic Liquid Crystal Easy Axis Nematic Phase Free Energy Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Blinov, L.M., Chigrinov, V.G.: Electrooptic Effects in Liquid Crystal Materials. Springer-Verlag, New York (1993). Chapter 3Google Scholar
  2. 2.
    Sonin, A.A.: The Surface Physics of Liquid Crystals. Gordon & Breach, Amsterdam (1995)Google Scholar
  3. 3.
    Kleman, M., Lavrentovich, O.: Soft Matter Physics. Springer-Verlag, New York (2003). Chapter 13Google Scholar
  4. 4.
    Yokoyama, H.: Interfaces and thin films. In: Collings, P., Patel, J. (eds.) Handbook of Liquid Crystal Research, pp. 179–235. Oxford University Press, New York (1997)Google Scholar
  5. 5.
    Muševič, I.: Interfacial and surface forces in nematics and smectics. In: Rasing, Th, Muševič, I. (eds.) Surface and Interfaces of Liquid Crystals, pp. 41–56. Springer, Berlin (2004)Google Scholar
  6. 6.
    Sheng, P.: Boundary-layer phase transitions in nematic liquid crystals. Phys. Rev. A 26, 1610–1617 (1982)CrossRefADSGoogle Scholar
  7. 7.
    Blinov, L.M., Kats, E.I., Sonin A.A.: Surface physics of thermotropic liquid crystals. Usp. Fiz. Nauk. 152, 449–477 (1987) (Sov. Phys. Uspekhi 30, 604 (1987)Google Scholar
  8. 8.
    Horn, R.G., Israelashvili, J.N., Perez, E.: Forces due to structure in a thin liquid crystal film. J. Phys. (Paris) 42, 39–52 (1981)Google Scholar
  9. 9.
    Hara, M.: STM studies of anchoring phase transitions at nematic interfaces. In: Dunmur, D., Fukuda, A., Luckhurst, G. (eds.) Physical Properties of Liquid crystals: Nematics, pp.503–514. INSPEC, London (2001)Google Scholar
  10. 10.
    Ryschenkov, Yu, Kleman, M.: Surface defects and structural transitions in very low anchoring energy nematic thin films. J. Chem. Phys. 64, 404–409 (1976)CrossRefADSGoogle Scholar
  11. 11.
    Guyot-Sionnest, P., Hsiung, H., Shen, Y.R.: Surface polar ordering in a liquid crystal observed by optical second harmonic generation. Phys. Rev. Lett. 57, 2963–2966 (1986)CrossRefADSGoogle Scholar
  12. 12.
    Prost, J., Pershan, P.S.: Flexoelectricity in nematic and smectic-A liquid crystals. J. Appl. Phys. 47, 2298–2313 (1976)CrossRefADSGoogle Scholar
  13. 13.
    Meyer, R.B.: Piezoelectric effect in liquid crystals. Phys. Rev. Lett. 22, 917–921 (1969)CrossRefADSGoogle Scholar
  14. 14.
    Barbero, G., Dozov, I., Palierne, J.F., Durand, G.: Order electricity and surface orientation in nematic liquid crystals. Phys. Rev. Lett. 56, 2056–2059 (1986)CrossRefADSGoogle Scholar
  15. 15.
    Blinov, L.M., Barnik, M.I., Ohoka, H., Ozaki, M., Yoshino, K.: Separate Measurements of the Flexoelectric and Surface Polarization in a Model Nematic Liquid Crystal MBBA: on Validity of the Quadrupolar Approach. Phys. Rev. E 64, 031707–031713 (2001)CrossRefADSGoogle Scholar
  16. 16.
    Rapini, A., Papoular, M.: Distorsion d’une lamelle nematique sous champ magnetique conditions d’ancrage aux parois. J. Phys. (Paris) 30, Colloq. C4, 54–56 (1969)Google Scholar
  17. 17.
    Chatelain, P.: Sur l’orinetation des cristaux liquides par les surfaces frottées. CR. Acad. Sci. 213, 875–876 (1941)Google Scholar
  18. 18.
    Chigrinov, V., Kozenkov, V., Kwok, H.-S.: Photoalignment of Liquid Crystalline Materials: Physics and Application. Wiley, Chichester (2008)CrossRefGoogle Scholar
  19. 19.
    Muševič, I., Nieuwkerk, C., Rasing, T.H.: Introduction. In: Rasing, T.H., Muševič, I. (eds.) Surface and Interfaces of Liquid Crystals, pp. 3–15. Springer, Berlin (2004)Google Scholar
  20. 20.
    Blinov, L.M., Sonin, A.A.: The interaction of nematic liquid crystals with anisotropic substrates. Mol. Cryst. Liq. Cryst. 179, 13–25 (1990)Google Scholar
  21. 21.
    Barberi, R., Durand, G.: Controlled textural bistability in nematic liquid crystals. In: Collings, P., Patel, J. (eds.) Handbook of Liquid Crystal Research, pp. 567–589. Oxford University Press, New York (1997)Google Scholar
  22. 22.
    Patel, J.S., Yokoyama, H.: Continuous anchoring transition in liquid crystals. Nature 362, 525–527 (1993)CrossRefADSGoogle Scholar
  23. 23.
    Berreman, D.: Solid surface shape and the alignment of the adjacent liquid crystal. Phys. Rev. Lett. 28, 1683–1686 (1972)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Russian Academy of Sciences Inst. CrystallographyMoscowRussia

Personalised recommendations