Advertisement

Uncovering Angkor: Integrated Remote Sensing Applications in the Archaeology of Early Cambodia

  • Damian Evans
  • Arianna Traviglia
Chapter
Part of the Remote Sensing and Digital Image Processing book series (RDIP, volume 16)

Abstract

For more than a decade the multinational (Australian, French, Cambodian) Greater Angkor Project has been investigating the rise and fall of medieval urbanism at Angkor, in Cambodia, using a diverse range of techniques, including extensive use of remotely sensed imagery to find, map and analyse elements of urban form. The research activities have focussed on the role of Angkor’s elaborate water management system in the demise of the urban complex, and has recently been expanded to include nearby ‘secondary’ settlement complexes such as provincial centres and ephemeral capitals. In such a research agenda, it is crucial to gain a full understanding of the original hydrological layout of the Angkor basin, in order to provide essential insights into human modifications to the natural hydrology and topography. To this end, a number of multispectral satellite images (including QuickBird and ASTER) were processed and analysed to identify palaeo-environmental traces and anthropogenic features relevant to the identification of remnants of the original fluvial system. Vegetation indices (VI), Vegetation suppression and Principal Component Analysis (PCA) were adopted as the primary procedures in order to detect relevant traces over differing environments such as perennially forested zones, scrubland and barren terrain. The outcome of this work has been to add significant chronological resolution to the current map of Greater Angkor.

Keywords

Angkor Cambodia Multispectral data QuickBird ASTER Vegetation Indices Vegetation suppression Principal Component Analysis (PCA) 

Notes

Acknowledgements

The authors wish to thank the Australian Research Council (DP0880490, DP0211012, DP0558130, LX0882079); Faculty of Arts, School of Philosophical and Historical Inquiry, and Archaeological Computing Laboratory at the University of Sydney; Robert Christie Foundation; GeoEye Foundation; NASA; German Aerospace Centre (DLR); National Geographic; Carlyle Greenwell Bequest; Iain A Cameron Memorial Travel Grant; Royal Angkor Foundation Koh Ker Project; APSARA National Authority and Ministry of Culture and Fine Arts (Cambodia); Global Heritage Fund Banteay Chmar Project; Angkor Ultralight Survey; Bun Narith; Ros Borath; Soeung Kong; Heng Sophady; Ngaire Richards; Christophe Pottier; Roland Fletcher; Mitch Hendrickson; Martin King; Ian Johnson and Andrew Wilson.

References

  1. Acker R (1998) New geographical tests of the hydraulic thesis at Angkor. South East Asia Res 6:5–47Google Scholar
  2. Aymonier E (1900–04) Le Cambodge. Ernest Leroux, ParisGoogle Scholar
  3. Baty P (2005) Extension de l’aéroport de Siem Reap 2004: Rapport de fouille archéologique. APSARA – INRAP, Siem ReapGoogle Scholar
  4. Billman BR (1999) Settlement pattern research in the Americas: past, present and future. In: Billman BR, Feinman GM (eds) Settlement pattern studies in the Americas: fifty years since Viru. Smithsonian Institution Press, Washington, DC, pp 1–9Google Scholar
  5. Bronson B (1978) Angkor, Anuradhapura, Prambanan, Tikal: Maya subsistence in an Asian perspective. In: Harrison PD, Turner BL (eds) Pre-Hispanic Maya agriculture. University of New Mexico Press, Albequerque, pp 255–300Google Scholar
  6. Chandler DP (2000) A history of Cambodia. Silkworm Books, Chiang MaiGoogle Scholar
  7. Crippen RE, Blom RG (2001) Unveiling the lithology of vegetated terrains in remotely sensed imagery. Photogramm Eng Remote Sens 67:935–943Google Scholar
  8. Engelhardt RA (1995) Two thousand years of engineering genius on the Angkor plain. Expedition 37:18–29Google Scholar
  9. Evans D (2002) Pixels, ponds and people: urban form at Angkor from radar imaging. Unpublished BA(Hons) thesis, University of Sydney, SydneyGoogle Scholar
  10. Evans D (2007) Putting Angkor on the map: a new survey of a Khmer ‘Hydraulic City’ in historical and theoretical context. Unpublished PhD thesis, University of Sydney, SydneyGoogle Scholar
  11. Evans D, Pottier C, Fletcher R, Hensley S, Tapley I, Milne A, Barbetti M (2007) A comprehensive archaeological map of the world’s largest preindustrial settlement complex at Angkor, Cambodia. Proc Natl Acad Sci USA 104:14277–14282CrossRefGoogle Scholar
  12. FINNMAP (1992–1993) Aerial photography for resources mapping in Cambodia; 1:25,000. FM-International Oy FINNMAP (Cambodia), Phnom PenhGoogle Scholar
  13. Fletcher R (1995) The limits of settlement growth: a theoretical outline. Cambridge University Press, CambridgeGoogle Scholar
  14. Fletcher R (2000–2001) A.R. Davis memorial lecture. Seeing Angkor: new views of an old city. J Orient Soc Aust 32–33:1–25Google Scholar
  15. Fletcher R (2004) Materiality, space, time and outcome. In: Bintliff JL (ed) A companion to archaeology. Blackwell Publishing, MaldenGoogle Scholar
  16. Fletcher R, Pottier C (2002) The Gossamer city: a new inquiry. Mus Int 54:23–7CrossRefGoogle Scholar
  17. Fletcher R, Barbetti M, Evans D, Than H, Sorithy I, Chan K, Penny D, Pottier C, Somaneath T (2003) Redefining Angkor: structure and environment in the largest, low density urban complex of the pre-industrial world. Udaya J Khmer Stud 4:107–121Google Scholar
  18. Fletcher R, Penny D, Evans D, Pottier C, Barbetti M, Kummu M, Lustig T (2008) The water management network of Angkor, Cambodia. Antiquity 82:658–670Google Scholar
  19. Gaughan AE, Binford MW, Southworth J (2008) Tourism, forest conversion, and land transformations in the Angkor basin, Cambodia. Appl Geogr 29:212–223CrossRefGoogle Scholar
  20. Goloubew V (1936) Reconnaissances aériennes au Cambodge. Bull École Fr Extrêm-Orient 36:465–478CrossRefGoogle Scholar
  21. Groslier B-P (1952) Milieu et évolution en Asie. Bull Soc Études Indoch 27:295–332Google Scholar
  22. Groslier B-P (1960) Our knowledge of Khmer civilisation, a re-appraisal. J Siam Soc 48:1–28Google Scholar
  23. Groslier B-P (1979) La Cité Hydraulique Angkorienne: Exploitation Ou Surexploitation Du Sol? Bull École Fr Extrêm-Orient 66:161–202CrossRefGoogle Scholar
  24. Hall KR (1992) Economic history of early Southeast Asia. In: Tarling N (ed) The Cambridge history of Southeast Asia: volume one, from early times to c.1800. Cambridge University Press, CambridgeGoogle Scholar
  25. Hendrickson M (2007) Arteries of Empire: An operational study of transport and communication in Angkorian Southeast Asia. Unpublished PhD thesis. University of Sydney, SydneyGoogle Scholar
  26. Jackson RD (1983) Spectral indices in n-space. Remote Sens Environ 13:409–421CrossRefGoogle Scholar
  27. Jacques C, Lafond P (2007) The Khmer empire: cities and sanctuaries, fifth to thirteenth century. River Books, BangkokGoogle Scholar
  28. Japan International Cooperation Agency (1999) Cambodia reconnaissance survey digital data. Japan International Cooperation Agency (JICA), Phnom PenhGoogle Scholar
  29. Jensen JR (2000) Remote sensing of the environment: an earth resource perspective. Prentice Hall, Upper Saddle RiversGoogle Scholar
  30. Jordan CF (1969) Derivation of leaf area index from quality of light on the forest floor. Ecology 50:663–666CrossRefGoogle Scholar
  31. Kiernan B (2001) Myth, nationalism and genocide. J Genocide Res 3:187–206CrossRefGoogle Scholar
  32. Kummu M (2003) The natural environment and historical water management of Angkor, Cambodia. In: 5th world archaeological congress, Washington, DC. http://users.tkk.fi/~mkummu/publications/kummu_WAC_WashingtonDC_2003.pdf. Accessed Apr 2009
  33. Lasaponara R, Masini N (2006) Identification of archaeological buried remains based on Normalized Difference Vegetation Index (NDVI) from QuickBird satellite data. IEEE Geosci Remote Sens Lett 3:325–328CrossRefGoogle Scholar
  34. Lasaponara R, Masini N (2007) Detection of archaeological crop marks by using satellite QuickBird multispectral imagery. J Archaeol Sci 34:214–221CrossRefGoogle Scholar
  35. Lillesand TM, Kiefer RW, Chipman JW (2004) Remote sensing and image interpretation, 5th edn. Wiley, New YorkGoogle Scholar
  36. Logan TL, Strahler AH (1983) Optimal Landsat transforms for forest applications. In: McDonald DC, Morrison DB (eds) Machine processing of remotely sensed data with special emphasis on natural resources evaluation. Ninth international symposium, 21–23 June 1983. Purdue Research Foundation, PurdueGoogle Scholar
  37. Lunet de Lajonquière E (1902–11) Inventaire déscriptif des monuments du Cambodge, 3 vols. École française d’Extrême-Orient, ParisGoogle Scholar
  38. Lustig E (2001) Water and the transformation of power at Angkor, 10th to 13th centuries A.D. Unpublished BA (Hons) thesis, University of Sydney, SydneyGoogle Scholar
  39. Ministère de la culture et des beaux-arts and École française d’Extrême-Orient (2007) Carte archéologique du Cambodge. Kim Long, Phnom PenhGoogle Scholar
  40. Moore E (1995) The waters of Angkor. Asian Art Cult 8:36–51Google Scholar
  41. Moore E (2000) Angkor water management, radar imaging, and the emergence of urban centres in Northern Cambodia. J Sophia Asian Stud 18:39–52Google Scholar
  42. Moore EH (1989) Water management in early Cambodia: evidence from aerial photography. Geogr J 155:204–214CrossRefGoogle Scholar
  43. Nogi A, Weidong Sun, Takagi M (1993) An alternative correction of atmospheric effects for NDVI estimation. In: Geoscience and remote sensing symposium, 18–21 Aug 1993. IGARSS ’93. Better Understanding of Earth EnvironmentGoogle Scholar
  44. Parmentier H (1939) L’art Khmer classique: monuments du quadrant nord-est. Les Éditions d’art et d’histoire, ParisGoogle Scholar
  45. Penny D (2006) Vegetation and land-use at Angkor, Cambodia: a dated pollen sequence from the Bakong temple moat. Antiquity 80:599–614Google Scholar
  46. Penny D, Pottier C, Kummu M, Fletcher R, Zoppi U, Barbetti M, Tous S (2007) Hydrological history of the West Baray, Angkor, revealed through palynological analysis of sediments from the West Mebon. Bull École Fr Extrêm-Orient 92:497–521Google Scholar
  47. Perry CR, Lautenschlager LF (1984) Functional equivalence of spectral vegetation indices. Remote Sens Environ 14:169–182CrossRefGoogle Scholar
  48. Pottier C (1993) Préparation d’une carte archéologique de la région d’Angkor. Unpublished DEA thesis, Université Paris III—Sorbonne Nouvelle, ParisGoogle Scholar
  49. Pottier C (1999) Carte Archéologique de la Région d’Angkor. Zone Sud. Unpublished PhD thesis, Université Paris III—Sorbonne Nouvelle, ParisGoogle Scholar
  50. Pottier C (2000) Some evidence of an inter-relationship between hydraulic features and rice field patterns at Angkor during ancient times. J Sophia Asian Stud 18:99–120Google Scholar
  51. Pottier C (2004) À propos du temple de Banteay Chmar. Aséanie 13:131–150Google Scholar
  52. Pottier C, Chhem RK, Demeter F, Gabillault C, Guerin A, Heng T, Khieu C, Latinis K, Boer-Mah TS, Stulemeijer R, Watanasak M, Yam S (2004) Mission Archéologique Franco-Khmère sur l’Aménagement du Territoire Angkorien: Campagne 2004. École Française d’Extrême-Orient, Siem ReapGoogle Scholar
  53. Pottier C, Bolle A, Llopis E, Soutif D, Tan C, Chevance JB, Kong V, Chea S, Sum S, Demeter F, Bacon A, Bouchet N, Souday C, Frelat M (2005) Mission Archéologique Franco-Khmère sur l’Aménagement du Territoire Angkorien: Campagne 2005. École Française d’Extrême-Orient, Siem ReapGoogle Scholar
  54. Qi J, Chehbouni A, Huete AR, Kerr YH (1994) Modified Soil Adjusted Vegetation Index (MSAVI). Remote Sens Environ 48:119–126CrossRefGoogle Scholar
  55. Richards N (2007) Prehistoric and early historic settlement around Banteay Chmar, north-west Cambodia. Unpublished BA(Hons) thesis, University of Sydney, SydneyGoogle Scholar
  56. Richardson AJ, Wiegand CL (1977) Distinguishing vegetation from soil background information (by gray mapping of Landsat MSS data). Photogramm Eng Remote Sens 43:1541–1552Google Scholar
  57. Rouse JWJ (1974) Monitoring vegetation systems in the great plains with ERTS. In: Freden SC et al (eds) Third earth resources technology satellite-1 symposium- vol I: technical presentations, 10–14 Dec 1973. NASA, Washington, DCGoogle Scholar
  58. Royal Angkor Foundation (1995) Angkor GIS v.1.0. Royal Angkor Foundation, BudapestGoogle Scholar
  59. Siljestrom PA (1997) Technical note. The application of selective principal components analysis (SPCA) to a Thematic Mapper (TM) image for the recognition of geomorphologic features configuration. Int J Remote Sens 18: 3843–3852Google Scholar
  60. Stone R (2009) Tree rings tell of Angkor’s dying days. Science 323:999. doi: 10.1126/science.323.5917.999b CrossRefGoogle Scholar
  61. Stott P (1992) Angkor: shifting the hydraulic paradigm. In: Rigg J (ed) The gift of water: water management, cosmology and the state in South East Asia. School of Oriental and African Studies, LondonGoogle Scholar
  62. Traviglia A (2006) Archaeological usability of hyperspectral images: successes and failures of image processing techniques. In: Campana S and Forte M (eds) From space to place. Proceedings of the 2nd international conference on remote sensing in archaeology, Rome, 4–7 Dec 2006. Archaeopress, OxfordGoogle Scholar
  63. Trouvé GA (1933) Chaussées et canaux autour d’Angkor Thom. Bull École Fr Extrêm-Orient 33:1120–1128Google Scholar
  64. Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8:127–150CrossRefGoogle Scholar
  65. Tucker CJ, Townshend RG, Goff TE (1985) African land-cover classification using satellite data. Science 227:369–375CrossRefGoogle Scholar
  66. Van Liere WJ (1980) Traditional water management in the lower Mekong Basin. World Archaeol 11:265–280CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Archaeology, School of Philosophical and Historical Inquiry, Faculty of ArtsUniversity of SydneySydneyAustralia

Personalised recommendations