Image Enhancement, Feature Extraction and Geospatial Analysis in an Archaeological Perspective

  • Rosa Lasaponara
  • Nicola Masini
Part of the Remote Sensing and Digital Image Processing book series (RDIP, volume 16)


The goal of image processing for archaeological applications is to enhance spatial patterns and/or local anomalies linked to ancient human activities and traces of palaeo-environments still fossilized in the modern landscape. In order to make the satellite data more meaningful for archaeologists and more exploitable for investigations, reliable data processing may be carried out. Over the years a great variety of digital image enhancement techniques have been devised for specific application fields according to data availability. Nevertheless, only recently these methods have captured great attention also in the field of archaeology for an easier extraction of quantitative information using effective and reliable semiautomatic data processing. The setting up of fully-automatic methodologies is a big challenge to be strategically addressed by research communities in the next years.


Radiometric and spectral enhancement Spectral indices PCA TCT Spatial enhancement Fourier Wavelet Filtering Geospatial analysis 


  1. Alexakis D, Sarris A, Astaras Th, Albanakis K (2009) Detection of Neolithic settlements in Thessaly (Greece) through multispectral and hyperspectral satellite imagery. Sensors 9:1167–1187CrossRefGoogle Scholar
  2. Aminzadeh B, Samani F (2006) Identifying the boundaries of the historical site of Persepolis using remote sensing. Remote Sens Environ 102:52–62CrossRefGoogle Scholar
  3. Anselin L (1995) Local Indicators of Spatial Association LISA. Geogr Anal 27:93–115CrossRefGoogle Scholar
  4. Beck A (2006) Google earth and world wind: remote sensing for the masses? Antiquity 80:308Google Scholar
  5. Beck A, Philip A, Abdulkarim M, Donoghue D (2007) Evaluation of Corona and Ikonos high resolution satellite imagery for archaeological prospection in western Syria. Antiquity 81:161–175Google Scholar
  6. Bewley R, Donoghue D, Gaffney V, Van Leusen M, Wise A (1999) Archiving aerial photography and remote sensing data: a guide to good practice. Oxbow, OxfordGoogle Scholar
  7. Bloisi F, Ebanista C, Falcone L, Vicari L (2010) Infrared image analysis and elaboration for archaeology: the case study of a medieval “capsella” from Cimitile, Italy. Appl Phys B Laser Opt 101(1–2):471–479Google Scholar
  8. Brown Vega M, Craig N, Asencios Lindo G (2011) Ground truthing of remotely identified fortifications on the Central Coast of Perú. J Archaeol Sci 38:1680–1689CrossRefGoogle Scholar
  9. Brown CT, Witschey WRT (2003) The fractal geometry of ancient Maya settlement. J Archaeol Sci 30:1619–1632CrossRefGoogle Scholar
  10. Burke A, Eberta D, Cardille J, Dauth D (2008) Paleoethology as a tool for the development of archaeological models of land-use: the Crimean Middle Palaeolithic. J Archaeol Sci 35(4):894–904CrossRefGoogle Scholar
  11. Campana S (2003) Ikonos-2 multispectral satellite imagery to the study of archaeological landscapes: an integrated multi-sensor approach in combination with “Traditional” methods. In: Proceedings of the 30th conference CAA, Heraklion, 2–6 April 2002, pp 219–225Google Scholar
  12. Campana S (2004) Le immagini da satellite nell’indagine archeologica: stato dell’arte, casi di studio, prospettive. Archeologia Aerea. Studi di Aerotopogr Archeol 1:279–299Google Scholar
  13. Campana S, Forte M (eds) (2006) From space to place. In: Proceedings of the 2nd international conference on remote sensing in archaeology, Roma, 4–7 Dec 2006, BAR International Series 1568. Archaeopress, OxfordGoogle Scholar
  14. Campana S, Francovich R (2003) Landscape archaeology in Tuscany: cultural resource management, remotely sensed techniques, GIS based data integration and interpretation. In: The reconstruction of archaeological landscapes through digital technologies, Boston, 2001, BAR International Series 1151. Archaeopress, Oxford, pp 15–28Google Scholar
  15. Ceccato P, Flasse S, Tarantola S, Jacquemoud S, Gregoire JM (2001) Detecting vegetation leaf water content using reflectance in the optical domain. Remote Sens Environ 77(1):22–33CrossRefGoogle Scholar
  16. Ceccato P, Flasse S, Gregoire J-M (2002a) Designing a spectral index to estimate vegetation water content from remote sensing data: part 2: validation and applications. Remote Sens Environ 82(2–3):198–207CrossRefGoogle Scholar
  17. Ceccato P, Gobron N, Flasse S, Pinty B, Tarantola S (2002b) Designing a spectral index to estimate vegetation water content from remote sensing data: part 1: theoretical approach. Remote Sens Environ 82(2–3):188–197CrossRefGoogle Scholar
  18. Chen CM, Hepner GF, Forster RR (2003) Fusion of hyperspectral and radar data using the IHS transformation to enhance urban surface features. J Photogramm Remote Sens 58:19–30CrossRefGoogle Scholar
  19. Clark CD, Garrod SM, Parker Pearson M (1998) Landscape archaeology and remote sensing in southern Madagascar. Int J Remote Sens 19(8):1461–1477CrossRefGoogle Scholar
  20. Cliff AD, Ord JK (1981) Spatial processes, models, and applications. Pion, LondonGoogle Scholar
  21. Crist EP, Cicone RC (1984) A physically-based transformation of thematic mapper data: the TM tasseled cap. IEEE T Geosci Remote Sens GE22(33):256–263CrossRefGoogle Scholar
  22. Crist EP, Kauth RJ (1986) The tasseled cap de mystified. Photogramm Eng Remote Sens 52(1):81–86Google Scholar
  23. Daubechies I (1990) The wavelet transform, time-frequency localization and signal analysis. IEEE Trans Inf Theory 36(5):961–1005CrossRefGoogle Scholar
  24. Davis CH, Wang X (2003) Planimetric accuracy of Ikonos 1 m panchromatic orthoimage products and their utility for local government GIS basemap applications. Int J Remote Sens 24(22):4267–4288CrossRefGoogle Scholar
  25. Deroin J-P, Téreygeol F, Heckes J (2011) Evaluation of very high to medium resolution multispectral satellite imagery for geoarchaeology in arid regions – case study from Jabali, Yemen. J Archaeol Sci 38:101–114CrossRefGoogle Scholar
  26. Drake NA (1997) Recent aeolian origin of superficial gypsum crusts in Southern Tunisia: geomorphological, archaeological and remote sensing evidence. Earth Surf Proc Land 22:641–656CrossRefGoogle Scholar
  27. ENVI (1999) Users guide, research systems. Boulder, ColoradoGoogle Scholar
  28. ERDAS (1999) Field guide, 5th edn. ERDAS, Inc., AtlantaGoogle Scholar
  29. Estes JE, Jensen JR, Tinney LR (1977) The use of historical photography for mapping archaeological sites. J Field Archaeol 4(4):441–447Google Scholar
  30. Farge M (1992) Wavelet transform and their applications to turbolence. Ann Rev Fluid Mech 24:395–457CrossRefGoogle Scholar
  31. Fourty T, Baret F (1998) On spectral estimates of fresh leaf biochemistry. Int J Remote Sens 19(7):1283–1297CrossRefGoogle Scholar
  32. Fowler MJF (1996) High resolution satellite imagery in archaeological application: a Russian satellite photograph of the Stonehenge region. Antiquity 70:667–671Google Scholar
  33. Fritz LW (1996) The era of commercial earth observation satellites. Photogramm Eng Remote Sens 62(1):39–45Google Scholar
  34. Gatrell AC, Bailey TC, Diggle PJ, Rowlingson BS (1996) Spatial point pattern analysis and its application in geographical epidemiology. Trans Inst Br Geogr 21:256–271CrossRefGoogle Scholar
  35. Geary RC (1954) The contiguity ratio and statistical mapping. Inc Stat 5:115–145Google Scholar
  36. Getis A, Ord JK (1994) The analysis of spatial association by use of distance statistics. Geogr Anal 24:189–206CrossRefGoogle Scholar
  37. Giardino M (2011) A history of NASA remote sensing contributions to archaeology. J Archaeol Sci 38:2003–2009CrossRefGoogle Scholar
  38. Gitelson AA, Kaufman Y, Merzlyak MN (1996) Use of green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens Environ 58:289–298CrossRefGoogle Scholar
  39. Grøn O, Palmer S, Stylegar F-A, Aase S, Esbensen K, Kucheryavski S, Sigurd A (2011) Interpretation of archaeological small-scale features in spectral images. J Archaeol Sci 38:2024–2030CrossRefGoogle Scholar
  40. Haralick RM, Sternberg SR, Zhuang X (1987) Image analysis using mathematical morphology. IEEE Trans Pattern Anal Mach Intell 4:532–550CrossRefGoogle Scholar
  41. Horne JH (2003) A tasselled cap transformation for IKONOS images. In: ASPRS 2003 annual conference proceedings, Anchorage, 5–9 May 2003Google Scholar
  42. Howey MCL (2011) Multiple pathways across past landscapes: circuit theory as a complementary geospatial method to least cost path for modeling past. J Archaeol Sci. doi: 10.1016/j.jas.2011.03.024
  43. Huete AR (1988) A soil-adjusted vegetation index (SAVI). Remote Sens Environ 25:295–309CrossRefGoogle Scholar
  44. Illian J, Penttinen A, Stoyan H, Stoyan D (2008) Statistical analysis and modelling of spatial point patterns. Wiley, West Sussex, 534 pGoogle Scholar
  45. Jackson TJ, Chen D, Cosh M et al (2004) Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybean. Remote Sens Environ 92:475–482CrossRefGoogle Scholar
  46. Kaufman YJ, Tanrer D (1992) Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Geosci Remote Sens 30:261–270CrossRefGoogle Scholar
  47. Kauth RJ, Thomas GS (1976) The Tasseled cap – a graphical description of the spectral-temporal development of agricultural crops as seen by Landsat. In: Proceedings of the symposium on machine processing of remotely sensed data, Purdue University, West Lafayette, 29 June–1 July 1976, pp 4B41–4B51Google Scholar
  48. Kennedy D, Bishop MC (2011) Google earth and the archaeology of Saudi Arabia. A case study from the Jeddah area. J Archaeol Sci 38:1284–1293CrossRefGoogle Scholar
  49. Kouchoukos N (2001) Satellite images and Near Eastern landscapes. Near East Archaeol 64(1–2):80–91CrossRefGoogle Scholar
  50. Lasaponara R, Masini N (2006a) On the potential of panchromatic and multispectral Quickbird data for archaeological prospection. Int J Remote Sens 27:3607–3614CrossRefGoogle Scholar
  51. Lasaponara R, Masini N (2006b) Identification of archaeological buried remains based on Normalized Difference Vegetation Index (NDVI) from Quickbird satellite data. IEEE Geosci Remote Sens 3(3):325–328CrossRefGoogle Scholar
  52. Lasaponara R, Masini N (2007a) Detection of archaeological crop marks by using satellite QuickBird multispectral imagery. J Archaeol Sci 34:214–221CrossRefGoogle Scholar
  53. Lasaponara R, Masini N (2007b) Improving satellite Quickbird – based identification of landscape archaeological features trough tasselled cup transformation and PCA. In: 21st CIPA symposium, Atene, 1–6 giugno 2007Google Scholar
  54. Lasaponara R, Masini N (2010) Facing the archaeological looting in Peru by local spatial autocorrelation statistics of very high resolution satellite imagery. In: Taniar D et al (eds) Proceedings of ICSSA, the 2010 international conference on computational science and its application, Fukuoka, 23–26 Mar 2010. Springer, Berlin, pp 261–269Google Scholar
  55. Lasaponara R, Masini N (2011) Satellite remote sensing in archaeology: past, present and future. J Archaeol Sci 38:1995–2002CrossRefGoogle Scholar
  56. Lasaponara R, Masini N, Scardozzi G (2008) Satellite based archaeological research in ancient territory of Hierapolis. In: 1st international EARSeL workshop. Advances in remote sensing for archaeology and cultural heritage management, CNR, Rome, 30 Sept–4 Oct 2008. Aracne, Rome, pp 11–16Google Scholar
  57. Lasaponara R, Masini N, Rizzo E, Coluzzi R, Orefici G (2011) New discoveries in the Piramide Naranjada in Cahuachi (Peru) using satellite, Ground Probing Radar and magnetic investigations. J Archaeol Sci 38:2031–2039CrossRefGoogle Scholar
  58. Lillesand TM, Kiefer RW (2000) Remote sensing and image interpretation. Wiley, New YorkGoogle Scholar
  59. Masini N, Lasaponara R (2006) Satellite-based recognition of landscape archaeological features related to ancient human transformation. J Geophys Eng 3:230–235. doi: 10.1088/1742-2132/3/3/004 CrossRefGoogle Scholar
  60. Masini N, Lasaponara R (2007) Investigating the spectral capability of QuickBird data to detect archaeological remains buried under vegetated and not vegetated areas. J Cult Herit 8(1):53–60CrossRefGoogle Scholar
  61. Miller WC (1957) Uses of aerial photographs in archaeological field work. Am Antiq 23(1):46–62CrossRefGoogle Scholar
  62. Moran P (1948) The interpretation of statistical maps. J R Stat Soc A 10:243–251Google Scholar
  63. Murgante B, Las Casas G, Danese M (2008) The periurban city: geo-statistical methods for its definition, Urban and regional data management. Taylor & Francis Group, London, pp 473–485Google Scholar
  64. Parcak S (2009) Satellite remote sensing for archaeology. Routledge, Abingdon/New YorkGoogle Scholar
  65. Pellemans AH, Jordans RW, Allewijn R (1993) Merging multispectral and panchromatic spot images with respect to the radiometric properties of the sensor. Photogramm Eng Remote Sens 59(1):81–87Google Scholar
  66. Pinty B, Verstraete MM (1992) GEMI: a non-linear index to monitor global vegetation from satellites. Vegetatio 101:15–20CrossRefGoogle Scholar
  67. Reeves DM (1936) Aerial photography and archaeology. Am Antiq 2(2):102–107CrossRefGoogle Scholar
  68. Richards JA, Jia X (2006) Remote sensing digital image analysis – hardback, 4th edn. Springer, Berlin/Hiedelberg, 476 pGoogle Scholar
  69. Sarris A, Jones R (2000) Geophysical and related techniques applied to archaeological survey in the Mediterranean: a review. J Mediterr Archaeol 13(1):3–75Google Scholar
  70. Saunders RW (1990) The determination of broad band surface albedo from AVHRR visible and near-infrared radiances. Int J Remote Sens 11:49–67CrossRefGoogle Scholar
  71. Sever TL (1998) Validating prehistoric and current social phenomena upon the landscape of Peten, Guatemala. In: Liverman D, Moran EF, Rinfuss RR, Stern PC (eds) People and pixels: linking remote sensing and social science. National Academy Press, Washington, DCGoogle Scholar
  72. Sheets P, Sever T (1988) High tech wizardry. Archaeology 41(6):28–35Google Scholar
  73. Soille P (2003) Morphological image analysis: principles and applications. Springer, BerlinGoogle Scholar
  74. Spennemann DHR (1987) Experiences with mapping sites on aerial photographs. J Field Archaeol 14(2):255CrossRefGoogle Scholar
  75. Stein C, Cullen B (1994) Satellite imagery and archaeology – a case study from Nikopolis. Am J Archaeol 98(2):326Google Scholar
  76. Stone KH (1964) A guide to the interpretation and analysis of aerial photographs. Ann Assoc Am Geogr 54(3):318–328CrossRefGoogle Scholar
  77. Strahler A, Strahler A (1997) Physical geography: science and systems of the human environment. Wiley, New YorkGoogle Scholar
  78. Sussman R, Green G, Sussman I (1994) Satellite imagery, human ecology, anthropology, and deforestation in Madagascar. Human Ecol 22(3):333–354CrossRefGoogle Scholar
  79. Telesca L, Coluzzi R, Lasaponara R (2009) Urban pattern morphology time variation in Southern Italy by using Landsat imagery. In: Murgante B, Borruso G, Lapucci A (eds) Geocomputation & urban planning, vol SCI 176. Springer, Heidelberg, pp 209–222CrossRefGoogle Scholar
  80. Toutin T (2001) DEM generation from new VIR sensors: IKONOS, ASTER and Landsat-7. In: IEEE-IGARSS proceedings, Sydney, 9–13 July 2001Google Scholar
  81. Toutin T (2002) DEM from stereo Landsat 7 ETM + data over high relief areas. Int J Remote Sens 23(10):2133–2139CrossRefGoogle Scholar
  82. Traviglia A (2008) The combinatorial explosion: defining procedures to reduce data redundancy and to validate the results of processed hyperspectral images. In: Proceedings of the 1st international EARSeL workshop. Advances in remote sensing for archaeology and cultural heritage management, CNR, Rome, 30 Sept–4 Oct 2008. Aracne, Rome, pp 23–26Google Scholar
  83. Traviglia A, Cottica D (2011) Remote sensing applications and archaeological research in the Northern Lagoon of Venice: the case of the lost settlement of constanciacus. J Archaeol Sci 38:2040–2050CrossRefGoogle Scholar
  84. Treitz PM, Howarth PJ (2000) High spatial resolution remote sensing data for forest ecosystem classification: – an examination of spatial scale. Remote Sens Environ 52:268–289CrossRefGoogle Scholar
  85. Tucker CJ (1980) Remote sensing of leaf water content in the near infrared. Remote Sens Environ 10:23–32CrossRefGoogle Scholar
  86. Urwin N, Ireland T (1992) Satellite imagery and landscape archaeology: an interim report on the environmental component of the Vinhais Landscape Archaeology Project, North Portugal. Mediterr Archaeol 5:121–131Google Scholar
  87. Ustin SL, Roberts DA, Jacquemoud S, Pinzon J, Gardner M, Scheer GJ, Castaneda CM, Palacios A (1998) Estimating canopy water content of chaparral shrubs using optical methods. Remote Sens Environ 65:280–291CrossRefGoogle Scholar
  88. Wang Z, Bovik AC (2002) A universal image quality index. IEEE Signal Proc Lett 9(3):81–84CrossRefGoogle Scholar
  89. Wang X-Y, Yang H-Y, Fu Z-K (2010) A new wavelet-based image denoising using undecimated discrete wavelet transform and least squares support vector machine. Expert Syst Appl 37(10):7040–7049CrossRefGoogle Scholar
  90. Weber SA, Yool SR (1999) Detection of subsurface archaeological architecture by computer assisted airphoto interpretation. Geoarchaeology 14(6):481–493CrossRefGoogle Scholar
  91. Wilson DR (2000) Air photo interpretation for archaeologists. Tempus, StroudGoogle Scholar
  92. Zarco-Tejada PJ, Rueda CA, Ustin SL (2003) Water content estimation in vegetation with MODIS reflectance data and model inversion methods. Remote Sens Environ 85:109–124CrossRefGoogle Scholar
  93. Zeng P, Dong H, Chi J, Xu X (2004) An approach for wavelet based image enhancement. In: Proceedings of IEEE international conference on robotics and biomimetics, ROBIO, Shenyang, 22–26 Aug 2004, pp 574–577Google Scholar
  94. Zhang H, Bevan A, Fuller D, Fang Y (2010) Archaeobotanical and GIS-based approaches to prehistoric agriculture in the upper Ying valley, Henan, China. J Archaeol Sci 37(7): 1480–1489CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Institute of Methodologies for Environmental AnalysisCNR-IMAATito ScaloItaly
  2. 2.Institute of Archaeological and Architectural HeritageCNR-IBAMTito ScaloItaly

Personalised recommendations