Following the Ancient Nasca Puquios from Space

  • Rosa Lasaponara
  • Nicola Masini
Part of the Remote Sensing and Digital Image Processing book series (RDIP, volume 16)


Precious information to reconstruct ancient environmental changes, still fossilized in the present landscape, may be captured from multispectral satellite images from medium to high spatial resolution. In particular, satellite derived moisture content may facilitate the identification of areas involved in early environmental manipulation mainly addressed to set up irrigation and artificial wet agro-ecosystems where the natural rainfall was insufficient to support agriculture. Up to now, only a few number of archaeological studies on spatial patterns of moisture have been carried out through the world using satellite optical data. In this chapter, Landsat and ASTER data were analyzed for some areas near Nasca river within the drainage basin of the Rio Grande, densely settled over the centuries and millennia even if the physical environment presented serious obstacles to human occupation. This region is one of the most arid areas of the world, so that the pluvial precipitations are so scarce that they can not be measured. To face this critical and extreme environmental conditions, ancient populations of the Nasca River valley, devised an underground aqueducts called puquios, some of which are still used today. Archaeologists suggest that during the Nasca flourishing period, certainly the number and spatial distribution of puquios was larger than today. We used satellite data to identify areas to be further investigated to assess if and where therein puquios were constructed for water control and retrieval.


Satellite remote sensing Hydrography Puquios Vegetation indices NDWI Nasca Peru 


  1. Adams REW, Jones RC (1981) Spatial patterns and regional growth among classic Maya cities. Am Antiquity 46(2):301CrossRefGoogle Scholar
  2. Brown CT, Witschey WRT (2003) The fractal geometry of ancient Maya settlement. J Archaeol Sci 30:1619–1632CrossRefGoogle Scholar
  3. Ceccato P, Flasse S, Tarantola S, Jacquemoud S, Gregoire JM (2001) Detecting vegetation leaf water content using reflectance in the optical domain. Remote Sens Environ 77(1):22–33CrossRefGoogle Scholar
  4. Ceccato P, Flasse S, Gregoire J-M (2002a) Designing a spectral index to estimate vegetation water content from remote sensing data: Part 2: validation and applications. Remote Sens Environ 82(2–3):198–207CrossRefGoogle Scholar
  5. Ceccato P, Gobron N, Flasse S, Pinty B, Tarantola S (2002b) Designing a spectral index to estimate vegetation water content from remote sensing data: Part 1: theoretical approach. Remote Sens Environ 82(2–3):188–197CrossRefGoogle Scholar
  6. Chen CM, Hepner GF, Forster RR (2003) Fusion of hyperspectral and radar data using the IHS transformation to enhance urban surface features. J Photogramm Remote Sens 58:19–30CrossRefGoogle Scholar
  7. Diamond J (2009) Maya, Khmer and Inca. Nature 461:479–480CrossRefGoogle Scholar
  8. Diamond J (2010) Two view of Collapse. Nature 463:880–881CrossRefGoogle Scholar
  9. Dillehay TD, Eling HH, Rossen J (2005) Preceramic irrigation canals in the Peruvian Andes. Proc Natl Acad Sci USA 102(47):17241–17244. doi: 10.1073/pnas.0508583102, 2005 November 22CrossRefGoogle Scholar
  10. Folan WJ, Faust B, Lutz W, Gunn JD (2000) Social and environmental factors in the classic Maya collapse. In: Lutz W, Prieto L, Sanderson W (eds) Population, development, and environment on the Yucatan Peninsula: from ancient Maya to 2030. Research report RR-00–14, IIASA, LaxenburgGoogle Scholar
  11. Fourty T, Baret F (1998) On spectral estimates of fresh leaf biochemistry. Int J Remote Sens 19(7):1283–1297CrossRefGoogle Scholar
  12. Gonzalez Garcia MF (1934) Los acueductos incaicos de Nazca. Aguas e Irrigación 2(2):207–222Google Scholar
  13. Jackson TJ, Chen D, Cosh M et al (2004) Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybean. Remote Sens Environ 92:475–482CrossRefGoogle Scholar
  14. Kauth RJ, Thomas GS (1976) The Tasseled Cap – a graphical description of the spectral-temporal development of agricultural crops as seen by Landsat. In: Proceedings of the symposium on machine processing of remotely sensed data, Purdue University, West Lafayette, pp 4B41–4B51Google Scholar
  15. Kobori I (1960) Human geography of methods of irrigation in the Central Andes. In: Andesu, Andes, the report of the University of Tokyo scientific expedition to the Andes in 1958, Bijitsu Shuppan sha, Tokyo, pp 74–97, 417–420Google Scholar
  16. Kroeber A, Collier D (1998) The archaeology and pottery of Nazca, Peru: Alfred L. Kroeber’s 1926 expedition. Altamira Press, Walnut CreekGoogle Scholar
  17. Lancho Rojas J (1986) Descripción y problemas de mantenimiento y rehabilitación de los acueductos de Nasca. Informe entregado al CONCYTEC (Consejo Nacional de Ciencia y Tecnología)Google Scholar
  18. Mejia Xesspe T (1942) Acueductos y Caminos Antiguos de la Hoya del Río Grande de Nasca. In: Actas y Trabajos científicos del XXVII Congreso Internacional de Americanistas, Lima. Librería e Imprenta GIL, Lima, vol 1, pp 559–569Google Scholar
  19. Orefici G, Drusini A (2003) Nasca: hipótesis y evidencias de su desarrollo cultural. Documentos e Investigaciones 2. Ediciones CISRAP, BresciaGoogle Scholar
  20. Peñuelas J, Inoue Y (1999) Reflectance indices indicative of changes in water and pigment contents of peanut and weat leaves. Photosynthetica 36(3):355–360CrossRefGoogle Scholar
  21. Peñuelas J, Filella I, Biel C, Serrano L, Savé R (1993) The reflectance at the 950–970 nm region as an indicator of plant water status. Int J Remote Sens 14(10):1887–1905CrossRefGoogle Scholar
  22. Ragab R (1995) Towards a continuous operational system to estimate the root-zone soil moisture from intermittent remotely sensed surface moisture. J Hydrol 173:1–25CrossRefGoogle Scholar
  23. Ripple WJ (1986) Spectral reflectance relationships to leaf water stress. Photogramm Eng Rem S 52(10):1669–1675Google Scholar
  24. Roberts DA, Green RO, Adams JB (1997) Temporal and spatial patterns in vegetation and atmospheric properties form AVIRIS. Remote Sens Environ 62:223–240CrossRefGoogle Scholar
  25. Rogers AS, Kearney MS (2004) Reducing signature variability in unmixing coastal marsh Thematic Mapper scenes using spectral indices. Int J Remote Sens 25(12): 2317–2335Google Scholar
  26. Rouse JW, Haas RH, Schell JA, Deering DW (1973) Monitoring vegetation systems in the Great Plains with ERTS. In: Third ERTS symposium, vol I, NASA SP-351, pp 309–317Google Scholar
  27. Schreiber KH (1995) The puquios of Nasca. Latin Am Antiquity 6(3):229–254CrossRefGoogle Scholar
  28. Schreiber KH (2003) Irrigation and society in the Peruvian Desert: the puquios of Nasca. Lexington Books, LanhamGoogle Scholar
  29. Schreiber KH, Lancho Rojas J (1988) Los puquios de Nasca: un sistema de galerías filtrantes. Boletín de Lima 59:51–62, Editorial Los Pinos, LimaGoogle Scholar
  30. Schreiber KH, Lancho Rojas J (2009) El control del agua y los puquios de Nasca. In: Nasca. El desierto del los Dioses de Cahuachi. Graph, Lima, pp 132–151Google Scholar
  31. Solar La Cruz F (1997) Nasca filtering galleries; galerías filtrantes. Universidad Abraham Valdelomar, LimaGoogle Scholar
  32. Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8:127–150CrossRefGoogle Scholar
  33. Tucker CJ (1980) Remote sensing of leaf water content in the near infrared. Remote Sens Environ 10:23–32CrossRefGoogle Scholar
  34. Ustin SL, Roberts DA, Jacquemoud S, Pinzon J, Gardner M, Scheer GJ, Castaneda CM, Palacios A (1998) Estimating canopy water content of chaparral shrubs using optical methods. Remote Sens Environ 65:280–291CrossRefGoogle Scholar
  35. Vaughn S, Crawford T (2009) A predictive model of archaeological potential: an example from northwestern Belize. Appl Geogr 29(4):542–555CrossRefGoogle Scholar
  36. Veni G (1990) Maya utilization of karst groundwater resources. Environ Geol 16(1):63–66. doi: 10.1007/BF01702224 Google Scholar
  37. Walker JP, Willgoose GR, Kalma JD (2001) One-dimensional soil moisture profile retrieval by assimilation of near-surface observations: a comparison of retrieval algorithms. Adv Water Res 24:631–650CrossRefGoogle Scholar
  38. Yu GR, Miwa T, Nakayama K, Matsuoka N, Kon H (2000) A proposal for universal formulas for estimating leaf water status of herbaceous and woody plants based on spectral reflectance properties. Plant Soil 227(1–2):47–58CrossRefGoogle Scholar
  39. Zarco-Tejada PJ, Rueda CA, Ustin SL (2003) Water content estimation in vegetation with MODIS reflectance data and model inversion methods. Remote Sens Environ 85:109–124CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Institute of Methodologies for Environmental AnalysisCNR-IMAATito ScaloItaly
  2. 2.Institute of Archaeological and Architectural HeritageCNR-IBAMTito ScaloItaly

Personalised recommendations