Advertisement

Climate Change: Coastal Dead Zones

  • Donald F. BoeschEmail author
  • Victoria J. Coles
  • David G. Kimmel
  • W. David Miller

Abstract

Many of the anticipated changes (increased streamflow, warmer temperatures, calmer summer winds, and increased depth due to sea-level rise) associated with global climate change would move the Chesapeake Bay ecosystem in the direction of worsening hypoxia (harmful oxygen depletion).

Keywords

Climate change Estuaries Eutrophication Hypoxia Chesapeake Bay 

References

  1. Austin, H. M. (2002). Decadal oscillations and regime shifts, a characterization of the Chesapeake Bay marine climate. American Fisheries Society Symposium, 32, 155–170.Google Scholar
  2. Bader, D. (Ed.). (2004). An appraisal of coupled climate model simulations. Report UCRL-TR-202550. Livermore, CA: Lawrence Livermore National Laboratory.Google Scholar
  3. Boesch, D. F., Brinsfield, R. B., & Magnien, R. E. (2001). Chesapeake Bay eutrophication: scientific understanding, ecosystem restoration, and challenges for agriculture. Journal of Environmental Quality, 30, 303–320.CrossRefGoogle Scholar
  4. Boicourt, W. C. (1993). Estuaries – where the river meets the sea. Oceanus, 36, 29–37.Google Scholar
  5. Boynton, W. R., Garber, J. H., Summers, R., & Kemp, W. M. (1995). Inputs, transformations, and transport of nitrogen and phosphorus in Chesapeake Bay and selected tributaries. Estuaries, 18, 285–314.CrossRefGoogle Scholar
  6. Breitburg, D. L., Loher, T., Pacey, C. A., & Gerstein, A. (1997). Varying effects of low dissolved oxygen on trophic interactions in an estuarine food web. Ecological Monographs, 67, 489–507.CrossRefGoogle Scholar
  7. Chao, S. Y., & Paluszkiewicz, T. (1991). The hydraulics of density currents over estuarine sills. Journal of Geophysical Research, 96, 7065–7076.CrossRefGoogle Scholar
  8. Chesapeake Bay Program. (1999). Chesapeake 2000: A Watershed Partnership Agreement. Annapolis, MD: U.S. Environmental Protection Agency, Chesapeake Bay Program Office.Google Scholar
  9. Chesapeake Bay Program. (2006). Chesapeake Bay 2005 health and restoration assessment, Part one: Ecosystem health. Annapolis, MD: Chesapeake Bay Program.Google Scholar
  10. Chesapeake Bay Watershed Blue Ribbon Finance Panel. (2004). Saving a national treasure: Financing the cleanup of the Chesapeake Bay. Annapolis, MD: Chesapeake Bay Program.Google Scholar
  11. Christensen, J. H., Hewitson, B., Busuioc, A., Chen, A., Gao, X., Held, I., et al. (2007). Regional climate projections. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller (Eds.), Climate change 2007: The physical science basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. UK/New York: Cambridge University Press.Google Scholar
  12. Cloern, J. E. (2001). Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series, 210, 223–253.CrossRefGoogle Scholar
  13. Cooper, S. R., & Brush, G. S. (1993). A 2,500-year history of anoxia and eutrophication in Chesapeake Bay. Estuaries, 16, 617–626.CrossRefGoogle Scholar
  14. Coutant, C. C. (1985). Striped bass, temperature, and dissolved oxygen: a speculative hypothesis for environmental risk. Transactions of the American Fisheries Society, 114, 31–61.CrossRefGoogle Scholar
  15. Cronin, T., Sanford, L., Langland, M., Willard, D., & Saenger, C. (2003). Estuarine sediment transport, deposition and sedimentation. In M. Langland & T. Cronin (Eds.), A Summary Report of sedimentary processes in Chesapeake Bay and Watershed. Water-Resources Investigations Report 03-4123. New Cumberland, PA: US Geological Survey.Google Scholar
  16. DeGaetano, A. T., & Allen, R. T. (2002). Trends in twentieth-century temperature extremes across the United States. Journal of Climate, 15, 3188–3205.CrossRefGoogle Scholar
  17. Diaz, R. J., & Rosenberg, R. (1995). Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanography and Marine Biology: An Annual Review, 33, 245–303.Google Scholar
  18. Diffenbaugh, N. S., Pal, J. S., Trapp, R. J., & Giorgi, F. (2005). Fine-scale processes regulate the response of extreme events to global climate change. Proceedings of the National Academy of Sciences of the United States of America, 102, 15774–15778.CrossRefGoogle Scholar
  19. Dybas, C. L. (2005). Dead zones spreading in world oceans. BioScience, 55, 552–557.CrossRefGoogle Scholar
  20. Fisher, A., Neff, R., & Barron, E. J. (2000). The Mid-Atlantic Regional Assessment: Motivation and approach. Climate Research, 14, 153–159.CrossRefGoogle Scholar
  21. Government Accountability Office. (2005). Chesapeake Bay Program: Improved strategies are needed to better assess, report, and manage restoration progress. Washington, DC: Government Accountability Office.Google Scholar
  22. Hagy, J. D., Boynton, W. R., Keefe, C. W., & Wood, K. V. (2004). Hypoxia in Chesapeake Bay, 1950–2001: Long-term change in relation to nutrient loading and river flow. Estuaries, 27, 634–658.CrossRefGoogle Scholar
  23. Harding, L. W. (1994). Long-term trends in the distribution of phytoplankton in Chesapeake Bay: roles of light, nutrients and streamflow. Marine Ecology Progress Series, 104, 267–291.CrossRefGoogle Scholar
  24. Harding, L. W., & Perry, E. S. (1997). Long-term increase of phytoplankton biomass in Chesapeake Bay, 1950–1994. Marine Ecology Progress Series, 157, 39–52.CrossRefGoogle Scholar
  25. Hayhoe, K., Wake, C. P., Huntington, T. G., Luo, L., Schwartz, M. D., Sheffield, J., et al. (2007). Past and future changes in climate and hydrological indicators in the US Northeast. Climate Dynamics, 28, 381–407.CrossRefGoogle Scholar
  26. Houde, E. D., & Rutherford, E. S. (1993). Recent trends in estuarine fisheries: predictions of fish production and yield. Estuaries, 16, 161–176.CrossRefGoogle Scholar
  27. Jennings, D. B., & Jarnagin, S. T. (2002). Changes in anthropogenic impervious surfaces, precipitation and daily streamflow discharge: a historical perspective in a mid-Atlantic subwatershed. Landscape Ecology, 17, 471–489.CrossRefGoogle Scholar
  28. Jones, K. B., Neale, A. C., Nash, M. S., Van Remortel, R. D., Wickham, J. D., Riitters, K. H., et al. (2001). Predicting nutrient and sediment loadings to streams from landscape metrics. Landscape Ecology, 16, 301–312.CrossRefGoogle Scholar
  29. Justić, D., Rabalais, N. N., & Turner, R. E. (2003). Simulated responses of the Gulf of Mexico hypoxia to variations in climate and anthropogenic nutrient loading. Journal of Marine Systems, 42, 115–126.CrossRefGoogle Scholar
  30. Kemp, W. M., Boynton, W. R., Adolf, J. E., Boesch, D. F., Boicourt, W. C., Brush, G., et al. (2005). Eutrophication of Chesapeake Bay: Historical trends and ecological interactions. Marine Ecology Progress Series, 303, 1–29.CrossRefGoogle Scholar
  31. Kemp, W. M., Sampou, P. A., Garber, J., Tuttle, J., & Boynton, W. R. (1992). Seasonal depletion of oxygen from bottom waters of Chesapeake Bay – roles of benthic and planktonic respiration and physical exchange processes. Marine Ecology Progress Series, 85, 137–152.CrossRefGoogle Scholar
  32. Koroncai, R., Linker, L., Sweeney, J., & Batiuk, R. (2003). Setting and allocating the Chesapeake Bay nutrient and sediment loads: The collaborative process, technical tools, and innovative approaches. Annapolis, MD: U.S. Environmental Protection Agency, Chesapeake Bay Program Office.Google Scholar
  33. Langland, M. J., Phillips, S. W., Raffensperger, J. R., & Moyer, D. (2004). Changes in streamflow and water quality in selected nontidal sites in the Chesapeake Bay Basin, 1985–2003. Scientific Investigations Report 2004-5259. Reston, VA: U.S. Geological Survey.Google Scholar
  34. Miller, W. D., Kimmel, D. G., & Harding, L. W. (2006). Predicting spring freshwater flow from synoptic-scale weather patterns for the Susquehanna River basin. Water Resources Research 42:W05414, doi:101029/2005WR004270.Google Scholar
  35. Najjar, R. G. (1999). The water balance of the Susquehanna River basin and its response to climate change. Journal of Hydrology, 219, 7–19.CrossRefGoogle Scholar
  36. Najjar, R. G., Walker, H. A., Anderson, P. J., Barron, E. J., Bord, R. J., Gibson, J. R., et al. (2000). The potential impacts of climate change on the mid-Atlantic coastal region. Climate Research, 14, 219–233.CrossRefGoogle Scholar
  37. Neff, R., Chang, J., Knight, C. G., Najjar, R. G., Yarnal, B., & Walker, H. A. (2000). Impact of climate variation and change on Mid-Atlantic region hydrology and water resources. Climate Research, 14, 207–218.CrossRefGoogle Scholar
  38. Wood, R. J., Boesch, D. F., & Kennedy, V. S. (2002). Future consequences of climate change for the Chesapeake Bay ecosystem and its fisheries. American Fisheries Society Symposium, 32, 171–184.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Donald F. Boesch
    • 1
    Email author
  • Victoria J. Coles
    • 1
  • David G. Kimmel
    • 1
  • W. David Miller
    • 1
  1. 1.University of Maryland Center for Environmental ScienceCambridgeUSA

Personalised recommendations