Skip to main content

Nanoengineered Systems for Regenerative Medicine Surface Engineered Polymeric Biomaterials with Improved Bio-Contact Properties

  • Conference paper
  • First Online:
Advances in Regenerative Medicine: Role of Nanotechnology, and Engineering Principles

Abstract

Some examples of surface engineered polymeric biomaterials with nano-size modified layers that have controlled protein adsorption and initial cell adhesion potentially applicable at blood and/or tissue contacting devices, scaffolds for cell culture, tissue engineering, etc. as well as the approaches to their preparation are presented here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi F, Mirzadeh A, Katbab A-A (2001) Modification of polysiloxane polymers for biomedical applications: a review. Polym Int 50:1279–1287

    Article  CAS  Google Scholar 

  • Altankov В (2003) заимодействие на клетки с биоматериални повърхности, Дисертация за доктор на биологическите науки, БАН, Институт по биофизика, 2003 г

    Google Scholar 

  • Bailey FE, Koleske JV (1976) Poly(ethylene Oxide). Academic, New York/San Francisco/London

    Google Scholar 

  • Baquey Ch, Palumbo F, Porte-Durrieu MC, Legeay G, Tressaud A, d’Agostino R (1999) Plasma treatment of expanded PTFE offers a way to a biofunctionalization of its surface. Nucl Instrum Methods Phys Res B 151:255–262

    Article  CAS  Google Scholar 

  • Chan CM (1993) Polymer surface modification and characterization, Chapters 5–7. Hanser, Brookfield, WI

    Google Scholar 

  • Chan CM, Ko T-M, Hiraoka H (1996) Polymer surface modification by plasmas and photons. Surf Sci Rep 24(1–2):1–54

    Article  CAS  Google Scholar 

  • Chu PK, Chen JY, Wang LP, Huang N (2002) Plasma-surface modification of biomaterials. Mater Sci Eng R36:143–206

    CAS  Google Scholar 

  • Drotleff S (2006) Polymers and protein-conjugates for tissue engineering. PhD Thesis, University of Regensburg, Germany

    Google Scholar 

  • Elbert DL, Hubbell JA (1996) Thin polymer layers formed using multiarm poly(ethylene glycol) vinylsulfone by a covalent layer-by-layer method. Annu Rev Mater Sci 26:365–394; Sakiyama-Elbert SE, Hubbell JA (2001) Functional biomaterials: design of novel biomaterials. Annu Rev Mater Res 31:183–201

    Article  CAS  Google Scholar 

  • Gölander C-G (1986) Preparation and properties of functionalized polymer surfaces. PhD Thesis, The Royal Institute of Technology, Stockholm, Sweden

    Google Scholar 

  • Gölander C-G, Jönsson E-S, Vladkova TG (1984) A surface coated article, process and means for the preparation of thereof and use of thereof, Swed. Pat. No 8404866-9/1984; Bulg. Pat. No 67997/1984; Europ. Pat. No 022966/1984; PCT SE85/00376/1984

    Google Scholar 

  • Gölander C-G, Jönsson E-G, Vladkova TG, Stenius P, Erksson J-C (1986) Preparation and protein adsorption properties of photo-polymerized hydrophylic films coating N-Vinyl pyrolidone (NVP), Acrylic Acid (AA) or Ethylene oxide (EO) units as studied by ESCA. Colloids Surf 21:149–166

    Article  Google Scholar 

  • Gölander C-G, Jönsson E-S, Vladkova T, Stenius P, Eriksson J-C, Kisch E (1987) Protein adsorption on some photo-polymerized hydrophilic films. Proc IUPAC’87, July 13–18, Sofia, 8.27

    Google Scholar 

  • Harris JM (ed) (1992) Poly(ethylene Glycol) chemistry. biotechnical and biomedical applications. Plenum, New York/London, pp 1–7

    Google Scholar 

  • Hippler R, Pfau S, Schmidt M, Schönbach K (eds) (2000) Low temperature plasma physics. Fundamental aspects and applications. Willey-VCH, Berlin/New York/Chichester/Brisbane/Toronto

    Google Scholar 

  • Hlady V, VanWagenen RA, Andrade JD (1985). In: Andrade JD (ed) Surface and interfacial aspects of biomedical polymers, vol 2. Plenum, New York, p 81

    Google Scholar 

  • Ho C-P, Yasuda H (1990) A hydrophilic plasma polymerized film composite for application in sensors. J Appl Polym Sci 39:154–160

    Article  Google Scholar 

  • Jager M, Zilkens C, Zanger K, Krauspe R (2007) Significance of nano- and microtopography for cell-suraface interactions in orthopedic implants. J Biomed Biotechnol 2007. Article ID 69036, doi:10.1155/2007/69036

    Google Scholar 

  • Keranov I, Vladkova T, Minchev M, Kostadinova A, Altankov G, Dineff P (2009) Topography characterization and initial cellular interaction of plasma based Ar+ beam treated PDMS surfaces. J Appl Polym Sci 111:2637–2646

    Article  CAS  Google Scholar 

  • Keranov I, Vladkova T, Minchev M, Kostadinova A, Altankov G (2008) Preparation, characterization and cellular interactions of collagen immobilized PDMS surfaces. J Appl Polym Sci 110:321–330

    Article  CAS  Google Scholar 

  • Kicheva Y, Vladkova T, Kostov V, Gölander C-G (2002a) Preparation of PVC drain tubing and in vivo study for their biocompatibility. JUCTM 37:77–84

    CAS  Google Scholar 

  • Kicheva Y, Kostov V, Mateev M, Vladkova T (2002) In vitro and in vivo evaluation of biocompatibility of PVC materials with modified surfaces. Proceedings of VIth Colloquium on Biomaterials, Aahen, Germany, 24–25 Sept 2002

    Google Scholar 

  • Kiss E, Gölander C-G, Eriksson J-C (1987) Surface grafting of polyethyleneoxide optimized by means of ESCA. Progress Colloid Polym Sci 74:113–118

    Article  Google Scholar 

  • Lee Sh-D, Hsiue G-H, Kao Ch-Y (1996) Preparation and characterization of a homo-bi-functional silicone rubber membrane grafted with acrylic acid via plasma-induced graft copolymerization. J Polym Sci A: Polym Chem 34:141–148

    Article  CAS  Google Scholar 

  • Malmsten M (ed) (1998) Biopolymers at interfaces. Marcel Dekker, New York

    Google Scholar 

  • Malmsten M, Van Alstin JM (1996) Reduction of protein adsorption by polyethylene glycol coatings. Colloids Surf B80:159–165

    Google Scholar 

  • Pasche S (2004) Mechanisms of protein resistance of adsorbed PEG-graft copolymers. DSc Thesis, Swiss Federal Institute of Technology, Zurich

    Google Scholar 

  • Sano S, Kato K, Ikada Y (1993) Introduction of functional groups onto the surface of polyethylene for protein immobilization. Biomaterials 14(11):817–822

    Article  CAS  Google Scholar 

  • Satriano C, Conte E, Marletta G (2001) Surface chemical structure and cell adhesion onto ion beam modified polysiloxane. Langmuir 17:2243–2250

    Article  CAS  Google Scholar 

  • Satriano C, Carpazza S, Guglielmino S, Marletta G (2002) Langmuir 18:9469–9476

    Article  CAS  Google Scholar 

  • Shanggun N (2003) Methods for amide formation. J Am Chem Soc 125:7754–7755

    Article  Google Scholar 

  • Vladkova T (1995) Modification of polymer surfaces for medical application. Proceedings of XIIith Science Conference. “Modification of Polymers”, Kudowa Zdroj, Poland, 11–15 Sept 1995

    Google Scholar 

  • Vladkova T (2001) Some possibilities to polymer surface modification. UCTM Ed. Centre, Sofia

    Google Scholar 

  • Vladkova TG, Gölander C-G, Christoskova St Ch, Jönsson E-S (1997) Mechanically stable hydrophylic films based on oxialkylated macromers polymerizable by UV irradiation. Polym Adv Technol 8:347–353

    Article  CAS  Google Scholar 

  • Vladkova T, Krasteva N, Kostadinova A, Altancov G (1999) Preparation of PEG-coated biomedical surfaces and study for their interaction with living cells. J Biomater Sci Polym Ed 10(6):609–620

    Article  CAS  Google Scholar 

  • Vladkova T, Keranov I, Altankov G (2004) Preparation and properties of PDMS surfaces grafted with acrylic acid via plasma pretment or ion-beam induced graft co-polymerization. Proceedings of 4th Internatinal Conference of the Chemical Societies of the South-Eastern European Countries (ICOSECS), Belgrad, Serbia, A-P 26, 18–21 July 2004

    Google Scholar 

  • Vladkova T, Keranov I, Dineff P, Altankov G (2004) Ion-beam assisted surface modification of PDMS. Proceedings of XVIIIth Congres of Chemists and Technologiest of Macedonia, Ohrid, PPM-16, 21–25 Sept 2004

    Google Scholar 

  • Vladkova T, Keranov I, Dineff P, Youroukov S, Avramova I, Krasteva N, Altankov G (2005) Plasma based Ar+ beam assisted poly(dimethylsiloxane) surface modification. Nucl Instrum Methods Phys Res B236:552–562

    Google Scholar 

  • Ykada Y, Suzuki M, Tamada Y (1984) Polymer surfaces possessing minimal interaction with blood components. In: Shalaby SW, Hoffman AS, Ratner BD (eds) Polymers as biomaterials. Plenum, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todorka Vladkova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Vladkova, T., Krasteva, N. (2010). Nanoengineered Systems for Regenerative Medicine Surface Engineered Polymeric Biomaterials with Improved Bio-Contact Properties. In: Shastri, V., Altankov, G., Lendlein, A. (eds) Advances in Regenerative Medicine: Role of Nanotechnology, and Engineering Principles. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8790-4_9

Download citation

Publish with us

Policies and ethics