Skip to main content

Nano-engineered Thin Films for Cell and Tissue-Contacting Applications

  • Conference paper
  • First Online:
Book cover Advances in Regenerative Medicine: Role of Nanotechnology, and Engineering Principles

Abstract

Thin films of bioactive, biocompatible and biotherapeutic materials are crucial to many applications in bioengineering and medicine, but the susceptibility of these materials to thermal damage forbids the application of many conventional thin-film deposition technologies. Here we describe a novel approach to depositing thin nanostructured thin films using resonant mid-infrared laser ablation. This vapor-phase technique – which can be employed either in vacuum or in air or another ambient gas environment – circumvents many difficulties attendant to conventional liquid-phase deposition technologies, such as spin- and dip-coating. It makes possible, for example, multilayer deposition with sharp interfaces, and patterning by means of shadow-masking. Examples of the technique on bio-compatible and -degradable polymers, nucleic acids, fluoropolymers and functionalized nanoparticles are described. In conclusion, current developments in laser technology are discussed that can enable this thin-film deposition technique, now based on tunable, picosecond mid-infrared free-electron lasers, to be realized using mid-infrared solid-state, table-top laser sources with similar characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abarrategi A, Gutierrez MC, Moreno-Vicente C, Hortiguela MJ, Ramos V, Lopez-Lacomba JL, Ferrer ML, del Monte F (2008) Multiwall carbon nanotube scaffolds for tissue engineering purposes. Biomaterials 29(1):94–102

    Article  CAS  Google Scholar 

  • Athanasiou KA, Agrawal CM, Barber FA, Burkhart SS (1998) Orthopaedic applications for PLA-PGA biodegradable polymers. Arthroscopy 14(7):726–737

    Article  CAS  Google Scholar 

  • Becker K, Johnson JB, Edwards GS (1994) Broadband Pockels cell and driver for a Mark III-type free electron laser. Rev Sci Instrum 65(5):6

    Article  Google Scholar 

  • Brunner F, Innerhofer E, Marchese SV, Sudmeyer T, Paschotta R, Usami T, Ito H, Kurimura S, Kitamura K, Arisholm G, Keller U (2004) Powerful red-green-blue laser source pumped with a mode-locked thin, disk laser. Opt Lett 29(16):1921–1923

    Article  Google Scholar 

  • Bubb DM, Haglund RF Jr (2006) Resonant infrared pulsed laser ablation and deposition of thin polymer films. In: Eason R (ed) Pulsed laser deposition of thin films: applications-led growth of functional materials. Wiley, New York, pp 35–61

    Google Scholar 

  • Bubb DM, Toftmann B, Haglund RF, Horwitz JS, Papantonakis MR, McGill RA, Wu PW, Chrisey DB (2002) Resonant infrared pulsed laser deposition of thin biodegradable polymer films. Appl Phys A-Mater 74(1):123–125

    Article  CAS  Google Scholar 

  • Bubb DM, Johnson SL, Belmont R, Schriver KE, Haglund RF, Antonacci C, Yeung LS (2006a) Mode-specific effects in resonant infrared ablation and deposition of polystyrene. Appl Phys A 83(1):147–151

    Article  CAS  Google Scholar 

  • Bubb DM, Sezer AO, Harris D, Rezae F, Kelty SP (2006b) Steady-state mechanism for polymer ablation by a free-running Er:YAG laser. Appl Surf Sci 253(5):2386–2392

    Article  CAS  Google Scholar 

  • Burns A, Ow H, Wiesner U (2006a) Fluorescent core-shell silica nanoparticles: towards “Lab on a Particle” architectures for nanobiotechnology. Chem Soc Rev 35(11):1028–1042

    Article  CAS  Google Scholar 

  • Burns A, Sengupta P, Zedayko T, Baird B, Wiesner U (2006b) Core/shell fluorescent silica nanopartictes for chemical sensing: towards single-particle laboratories. Small 2(6):723–726

    Article  CAS  Google Scholar 

  • Chrisey DB, Hubler GK (eds) (1994) Pulsed laser deposition of thin solid films. Wiley, New York

    Google Scholar 

  • Dlott DD, Fayer MD (1989) Application of a 2-color free-electron laser to condensed-matter. J Opt Soc Am B 6(5):977–994

    Article  CAS  Google Scholar 

  • Dygert NL, Schriver KE, Haglund RF Jr (2007) Resonant infrared pulsed laser deposition of a polyimide precursor. IOP Conference Series 59(651–656)

    Google Scholar 

  • Edwards GS, Evertson D, Gabella W, Grant R, King TL, Kozub J, Mendenhall M, Shen J, Shores R, Storms S, Traeger RH (1996) Free-electron lasers: reliability, performance, and beam delivery. IEEE J Sel Top Quant 2(4):810–817

    Article  CAS  Google Scholar 

  • Edwards GS, Allen SJ, Haglund RF, Nemanich RJ, Redlich B, Simon JD, Yang WC (2005) Applications of free-electron lasers in the biological and material sciences. Photochem Photobiol 81(4):711–735

    Article  CAS  Google Scholar 

  • Ermer DR, Papantonakis MR, Baltz-Knorr M, Nakazawa D, Haglund RF (2000) Ablation of dielectric materials during laser irradiation involving strong vibrational coupling. Appl Phys A 70(6):633–635

    CAS  Google Scholar 

  • Fiore A, Berger V, Rosencher E, Bravetti P, Nagle J (1998) Phase matching using an isotropic nonlinear optical material. Nature 391(6666):463–466

    Article  CAS  Google Scholar 

  • Gamaly EG, Rode AV, Luther-Davies B (1999) Ultrafast ablation with high-pulse-rate lasers. Part I: theoretical considerations. J Appl Phys 85(8):4213–4221

    Article  CAS  Google Scholar 

  • Haglund RF Jr, Bubb DM, Ermer DR, Horwitz JS, Houser EJ, Hubler GK, Ivanov B, Papantonakis MR, Ringeisen BR, Schriver KE (2003) Resonant infrared laser materials processing at high vibrational excitation density: applications and mechanisms. In: Ostendorf A, Helvajian H, Sugioka K (eds) Laser precision manufacturing, Proc. SPIE, vol 5063

    Google Scholar 

  • Haidar R, Mustelier A, Kupecek P, Rosencher E, Triboulet R, Lemasson P, Mennerat G (2002) Largely tunable midinfrared (8-12 mu m) difference frequency generation in isotropic semiconductors. J Appl Phys 91(4):2550–2552

    Article  CAS  Google Scholar 

  • Hardy JG, Chadwick TS (2000) Sustained release drug delivery to the lungs – an option for the future. Clin Pharmacokinet 39(1):1–4

    Article  CAS  Google Scholar 

  • Innerhofer E, Sudmeyer T, Brunner F, Haring R, Aschwanden A, Paschotta R, Honninger C, Kumkar M, Keller U (2003) 60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser. Opt Lett 28(5):367–369

    Article  CAS  Google Scholar 

  • Innerhofer E, Sudmeyer T, Brunner F, Paschotta R, Keller U (2004) Mode-locked high-power lasers and nonlinear optics a powerful combination. Laser Phys Lett 1(2):82–85

    Article  CAS  Google Scholar 

  • Jones RAL (2002) Soft condensed matter. Oxford University Press, New York

    Google Scholar 

  • Keller U (2003) Recent developments in compact ultrafast lasers. Nature 424(6950):831–838

    Article  CAS  Google Scholar 

  • Kolev VZ, Duering MW, Luther-Davies B, Rode AV (2006) Compact high-power optical source for resonant infrared pulsed laser ablation and deposition of polymer materials. Opt Express 14(25):12302–12309

    Article  CAS  Google Scholar 

  • Lipski AM, Jaquiery C, Choi H, Eberli D, Stevens M, Martin I, Chen IW, Shastri VP (2007) Nanoscale engineering of biomaterial surfaces. Adv Mater 19(4):553–557

    Article  CAS  Google Scholar 

  • Neil GR, Bohn CL, Benson SV, Biallas G, Douglas D, Dylla HF, Evans R, Fugitt J, Grippo A, Gubeli J, Hill R, Jordan K, Krafft GA, Li R, Merminga L, Piot P, Preble J, Shinn M, Siggins T, Walker R, Yunn B (2000) Sustained kilowatt lasing in a free-electron laser with same-cell. Phys Rev Lett 84(22):5238

    Article  CAS  Google Scholar 

  • Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W (2007) Size-dependent cytotoxicity of gold nanoparticles. Small 3(11):1941–1949

    Article  CAS  Google Scholar 

  • Papantonakis MR, Haglund RF (2004) Picosecond pulsed laser deposition at high vibrational excitation density: the case of poly(tetrafluoroethylene). Appl Phys A 79(7):1687–1694

    Article  CAS  Google Scholar 

  • Ringeisen BR, Callahan J, Wu PK, Pique A, Spargo B, McGill RA, Bucaro M, Kim H, Bubb DM, Chrisey DB (2001) Novel laser-based deposition of active protein thin films. Langmuir 17(11):3472–3479

    Article  CAS  Google Scholar 

  • Ringeisen BR, Chrisey DB, Pique A, Young HD, Modi R, Bucaro M, Jones-Meehan J, Spargo BJ (2002) Generation of mesoscopic patterns of viable Escherichia coli by ambient laser transfer. Biomaterials 23(1):161–166

    Article  CAS  Google Scholar 

  • Rode AV, Luther-Davies B, Gamaly EG (1999) Ultrafast ablation with high-pulse-rate lasers. Part II: experiments on laser deposition of amorphous carbon films. J Appl Phys 85(8):4222–4230

    Article  CAS  Google Scholar 

  • Schwodiauer R, Bauer-Gogonea S, Bauer S, Heitz J, Arenholz E, Bauerle D (1998) Charge stability of pulsed-laser deposited polytetrafluoroethylene film electrets. Appl Phys Lett 73(20):2941–2943

    Article  CAS  Google Scholar 

Download references

Acknowledgements

It is a pleasure to acknowledge the expertise and insight of those who have contributed to much to the development of the RIR-PLD technique and to the understanding of the underlying mechanisms: Daniel D. M. Bubb (Rutgers University-Camden); James S. Horwitz, Michael R. Papantonakis and Duane L. Simonsen (Naval Research Laboratory); Erik Herz and Ulrich B. Wiesner (Cornell University); and Nicole L. Dygert, Stephen L. Johnson and Kenneth E. Schriver (Vanderbilt University). Financial support for the research at Vanderbilt has been provided by the Naval Research Laboratory, AppliFlex LLC and the Air Force Office of Scientific Research through the Medical Free-Electron Laser Program of the Department of Defense (F49620-01-1-0429), and is hereby gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard F. Haglund Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Haglund, R.F. (2010). Nano-engineered Thin Films for Cell and Tissue-Contacting Applications. In: Shastri, V., Altankov, G., Lendlein, A. (eds) Advances in Regenerative Medicine: Role of Nanotechnology, and Engineering Principles. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8790-4_16

Download citation

Publish with us

Policies and ethics