Skip to main content

UFOs, Worms, and Surfboards: What Shapes Teach Us About Cell–Material Interactions

  • Conference paper
  • First Online:

Abstract

The success of regenerative materials is dependent on the ability to elicit cell interactions. Cell–material interactions, both desired and undesired, are dictated by the physical properties of the material. Previous research has focused on surface chemistry and feature size of biomaterials. The role of shape, in particular the ability of cells to recognize and respond to shape, has not been determined. This is primarily due to the limited availability of techniques to produce materials with features of controlled and varied morphologies. To this end, we have created a diverse collection of novel polymer micro- and nano-particle shapes and studied their phagocytosis by macrophages. The macrophage immune response to biomaterials is a formidable obstacle in delivery and integration of materials for successful tissue regeneration, engineering, and drug delivery. The results show that particle shape, from the point of view of the macrophage, profoundly impacts phagocytosis, more than particle size and independent of surface chemistry. We can use this understanding to design material features that will direct desired macrophage response and, in the future, study the effects of shape on other cell functions. This work demonstrates the importance of shape in the design of biomaterials and its influence on cell–material interactions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aderem A, Underhill DM (1999) Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17(1):593–623

    Article  CAS  Google Scholar 

  • Aizawa H, Fukui Y, Yahara I (1997) Live dynamics of Dictyostelium cofilin suggests a role in remodeling actin latticework into bundles. J Cell Sci 110(19):2333–2344

    CAS  Google Scholar 

  • Arredouani MS, Palecanda A, Koziel H, Huang YC, Imrich A, Sulahian TH, Ning YY, Yang ZP, Pikkarainen T, Sankala M, Vargas SO, Takeya M, Tryggvason K, Kobzik L (2005) MARCO is the major binding receptor for unopsonized particles and bacteria on human alveolar macrophages. J Immunol 175(9):6058–6064

    CAS  Google Scholar 

  • Ball MD, Prendergast U, O’Connell C, Sherlock R (2007) Comparison of cell interactions with laser machined micron- and nanoscale features in polymer. Exp Mol Pathol 82(2):130–134

    Article  CAS  Google Scholar 

  • Cannon GJ, Swanson JA (1992) The macrophage capacity for phagocytosis. J Cell Sci 101(4):907–913

    Google Scholar 

  • Castellano F, Chavrier P, Caron E (2001) Actin dynamics during phagocytosis. Semin Immunol 13(6):347–355

    Article  CAS  Google Scholar 

  • Champion JA, Katare YK, Mitragotri S (2007a) Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J Control Release 121(1–2):3–9

    Article  CAS  Google Scholar 

  • Champion JA, Katare YK, Mitragotri S (2007b) Making polymeric micro- and nanoparticles of complex shapes. Proc Natl Acad Sci USA 104(29):11901–11904

    Article  CAS  Google Scholar 

  • Cougoule C, Wiedemann A, Lim J, Caron E (2004) Phagocytosis, an alternative model system for the study of cell adhesion. Semin Cell Dev Biol 15(6):679–689

    CAS  Google Scholar 

  • Dunne M, Corrigan OI, Ramtoola Z (2000) Influence of particle size and dissolution conditions on the degradation properties of polylactide-co-glycolide particles. Biomaterials 21(16):1659–1668

    Article  CAS  Google Scholar 

  • Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M, Minko T, Discher DE (2007) Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2(4):249–255

    Article  CAS  Google Scholar 

  • Goldsby RA, Kindt TJ, Osborne BA, Kuby J (2003) Immunology. Freeman, New York

    Google Scholar 

  • Goldsmith HL, Turitto VT (1986) Rheological aspects of thrombosis and hemostasis - basic principles and applications. Thromb Haemost 55(3):415–435

    CAS  Google Scholar 

  • Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R (1994) Biodegradable long-circulating polymeric nanospheres. Science 263(5153):1600–1603

    Article  CAS  Google Scholar 

  • Hetland G, Namork E, Schwarze PE, Aase A (2000) Mechanism for uptake of silica particles by monocytic U937 cells. Hum Exp Toxicol 19(7):412–419

    Article  CAS  Google Scholar 

  • Ho CC, Keller A, Odell JA, Ottewill RH (1993) Preparation of monodisperse ellipsoidal polystyrene particles. Colloid Polym Sci 271(5):469–479

    Article  CAS  Google Scholar 

  • Illum L, Davis SS, Wilson CG, Thomas NW, Frier M, Hardy JG (1982) Blood clearance and organ deposition of intravenously administered colloidal particles – the effects of particle size, nature and shape. Int J Pharm 12(2–3):135–146

    Article  CAS  Google Scholar 

  • Israelchvili J (1992) Intermolecular and surface forces. Academic, San Diego, CA

    Google Scholar 

  • Kawaguchi H, Koiwai N, Ohtsuka Y, Miyamoto M, Sasakawa S (1986) Phagocytosis of latex-particles by leukocytes. 1. Dependence of phagocytosis on the size and surface-potential of particles. Biomaterials 7(1):61–66

    Article  CAS  Google Scholar 

  • Koval M, Preiter K, Adles C, Stahl PD, Steinberg TH (1998) Size of IgG-opsonized particles determines macrophage response during internalization. Exp Cell Res 242(1):265–273

    Article  CAS  Google Scholar 

  • Lamprecht A, Schafer U, Lehr CM (2001) Size-dependent bioadhesion of micro- and nanoparticulate carriers to the inflamed colonic mucosa. Pharm Res 18(6):788–793

    Article  CAS  Google Scholar 

  • Langer R (1990) New methods of drug delivery. Science 249(4976):1527–1533

    Article  CAS  Google Scholar 

  • Lee E, Shelden EA, Knecht DA (1997) Changes in actin filament organization during pseudopod formation. Exp Cell Res 235(1):295–299

    Article  CAS  Google Scholar 

  • Lee EY, Pang KM, Knecht D (2001) The regulation of actin polymerization and cross-linking in Dictyostelium. Biochim Biophys Acta 1525(3):217–227

    Article  CAS  Google Scholar 

  • Liang HF, Chen CT, Chen SC, Kulkarni AR, Chiu YL, Chen MC, Sung HW (2006) Paclitaxel-loaded poly(gamma-glutamic acid)-poly(lactide) nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Biomaterials 27(9):2051–2059

    Article  CAS  Google Scholar 

  • Manning MC, Patel K, Borchardt RT (1989) Stability of protein pharmaceuticals. Pharm Res 6(11):903–918

    Article  CAS  Google Scholar 

  • May RC, Machesky LM (2001) Phagocytosis and the actin cytoskeleton. J Cell Sci 114(6):1061–1077

    CAS  Google Scholar 

  • Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharm Rev 53(2):283–318

    CAS  Google Scholar 

  • Mohraz A, Solomon MJ (2005) Direct visualization of colloidal rod assembly by confocal microscopy. Langmuir 21(12):5298–5306

    Article  CAS  Google Scholar 

  • O’Brien DK, Melville SB (2003) Multiple effects on Clostridium perfringens binding, uptake and trafficking to lysosomes by inhibitors of macrophage phagocytosis receptors. Microbiol SGM 149:1377–1386

    Article  Google Scholar 

  • Painter PC, Coleman MM (1997) Fundamentals of polymer science. CRC, Boca Raton, FL

    Google Scholar 

  • Panyam J, Dali MA, Sahoo SK, Ma WX, Chakravarthi SS, Amidon GL, Levy RJ, Labhasetwar V (2003) Polymer degradation and in vitro release of a model protein from poly(d, l-lactide-co-glycolide) nano- and microparticles. J Control Release 92(1–2):173–187

    Article  CAS  Google Scholar 

  • Patil VRS, Campbell CJ, Yun YH, Slack SM, Goetz DJ (2001) Particle diameter influences adhesion under flow. Biophys J 80(4):1733–1743

    Article  Google Scholar 

  • Patri AK, Majoros IJ, Baker JR (2002) Dendritic polymer macromolecular carriers for drug delivery. Curr Opin Chem Biol 6(4):466–471

    Article  CAS  Google Scholar 

  • Pearson AM (1996) Scavenger receptors in innate immunity. Curr Opin Immunol 8(1):20–28

    Article  CAS  Google Scholar 

  • Poste G, Kirsh R (1983) Site-specific (targeted) drug delivery in cancer-therapy. Biotechnology 1(10):869–878

    Article  CAS  Google Scholar 

  • Prausnitz MR, Mitragotri S, Langer R (2004) Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov 3(2):115–124

    Article  CAS  Google Scholar 

  • Reddy GR, Bhojani MS, McConville P, Moody J, Moffat BA, Hall DE, Kim G, Koo YEL, Woolliscroft MJ, Sugai JV, Johnson TD, Philbert MA, Kopelman R, Rehemtulla A, Ross BD (2006) Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin Cancer Res 12(22):6677–6686

    Article  CAS  Google Scholar 

  • Rejman J, Oberle V, Zuhorn IS, Hoekstra D (2004) Size-dependent internalization of particles via the pathways of clathrin-and caveolae-mediated endocytosis. Biochem J 377:159–169

    Article  CAS  Google Scholar 

  • Roff WJ, Scott JR (1971) Fibres, films, plastics and rubbers. Butterworths, London

    Google Scholar 

  • Rolland JP, Maynor BW, Euliss LE, Exner AE, Denison GM, DeSimone JM (2005) Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. J Am Chem Soc 127(28):10096–10100

    Article  CAS  Google Scholar 

  • Ross JA, Auger MJ (2002) The biology of the macrophage. In: Burke B, Lewis CE (eds) The macrophage. Oxford University Press, Oxford

    Google Scholar 

  • Rudt S, Muller RH (1993) In vitro phagocytosis assay of nano- and microparticles by chemiluminescence. 3. Uptake of differently sized surface-modified particles, and its correlation to particle properties and in vivo distribution. Eur J Pharm Sci 1(1):31–39

    Article  Google Scholar 

  • Simon SI, Schmidschonbein GW (1988) Biophysical aspects of microsphere engulfment by human-neutrophils. Biophys J 53(2):163–173

    Article  CAS  Google Scholar 

  • Stolnik S, Illum L, Davis SS (1995) Long circulating microparticulate drug carriers. Adv Drug Deliv Rev 16(2–3):195–214

    Article  CAS  Google Scholar 

  • Storm G, Belliot SO, Daemen T, Lasic DD (1995) Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv Drug Deliv Rev 17(1):31–48

    Article  CAS  Google Scholar 

  • Swanson JA, Hoppe AD (2004) The coordination of signaling during Fc receptor-mediated phagocytosis. J Leukoc Biol 76(6):1093–1103

    Article  CAS  Google Scholar 

  • Tabata Y, Ikada Y (1990) Phagocytosis of polymer microspheres by macrophages. Adv Polym Sci 94:107–141

    Article  CAS  Google Scholar 

  • Weisstein EW (1999) http://mathworld.wolfram.com/Ellipse.html

  • Welch MD, Mullins RD (2002) Cellular control of actin nucleation. Annu Rev Cell Dev Biol 18:247–288

    Article  CAS  Google Scholar 

  • Yim EK, Leong KW (2005) Significance of synthetic nanostructures in dictating cellular response. Nanomedicine 1(1):10–21

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Mitragotri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Champion, J.A., Mitragotri, S. (2010). UFOs, Worms, and Surfboards: What Shapes Teach Us About Cell–Material Interactions. In: Shastri, V., Altankov, G., Lendlein, A. (eds) Advances in Regenerative Medicine: Role of Nanotechnology, and Engineering Principles. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8790-4_15

Download citation

Publish with us

Policies and ethics