Skip to main content

Exploratories for Large-Scale and Long-Term Functional Biodiversity Research

  • Chapter
  • First Online:
Long-Term Ecological Research

Abstract

Current changes in biodiversity and their functional consequences for ecosystem processes matter for both fundamental and applied reasons. In most places the most important anthropogenic determinant of biodiversity is land use. The effects of type and intensity of land use are modulated by climate and atmospheric change, nutrient deposition and pollution and by feedback effects of changed biological processes. However, it is not known whether the genetic and species diversity of different taxa responds to land-use change in similar ways. Moreover, consequences of changing diversity for ecosystem processes have almost exclusively been studied in model experiments of limited scope. Clearly, there is an urgent scientific and societal demand to investigate the relationships between land use, biodiversity and ecosystem processes in many replicate study sites in the context of actual landscapes. Furthermore, these studies need to be set up in long-term frameworks. Moreover, because monitoring and comparative observation cannot unravel causal mechanisms they need to be complemented by manipulative experiments. In the ‘Exploratories for large-scale and long-term functional biodiversity research’ (see http://www.biodiversity-exploratories.de), we provide a platform for such successful long-term biodiversity research. The biodiversity exploratories aim at contributing to a better understanding of causal relationships affecting diversity patterns and their change, developing applied measures in order to mitigate loss of diversity and functionality, integrating a strong research community to its full potential, training a new generation of biodiversity explorers, extending the integrated view of functional biodiversity research to society and stimulating long-term ecological research in Germany and globally. Our experience has several implications for long-term ecological research and the LTER network including the necessity of formulating common research questions, establishing a joint database, applying modern tools for meta-analysis or quantitative review and developing standardised experimental and measurement protocols for facilitating future data synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andow, D. A. (1991). Vegetational diversity and arthropod population response. Annual Review of Entomology, 36, 561–586.

    Article  Google Scholar 

  • Balvanera, P., Pfisterer, A. B., Buchmann, N., He, J.-S., Nakashizuka, T., Raffaelli, D., et al. (2006). Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecology Letters, 9, 1146–115.

    Article  Google Scholar 

  • Beck, E. (2004). German Research Programs, related to the understanding and conservation of biodiversity as an example of the impact of the Convention of Rio on an industrial nation. Lyonia, 6, 7–18.

    Google Scholar 

  • Blüthgen, N., Menzel, F., Hovestadt, T., Fiala, B., & Blüthgen, N. (2007). Specialization, constraints, and conflicting interests in mutualistic networks. Current Biology, 17, 341–346.

    Article  Google Scholar 

  • Brändle, M., & Brandl, R. (2001). Species richness of insects and mites on trees: Expanding Southwood. Journal of Animal Ecology, 70, 491–504.

    Article  Google Scholar 

  • Canals, L. M. I., Bauer, C., Depestele, J., Dubreuil, A., Knuchel, R. F., Gaillard, G., et al. (2007). Key elements in a framework for land use impact assessment within LCA. International Journal of Life Cycle Assessment, 12, 5–15.

    Article  Google Scholar 

  • CBD. (1992). Convention on biological diversity (with annexes). Concluded at Rio de Janeiro on 5 June 1992. United Nations Treaty Series, 1760, 142–302.

    Google Scholar 

  • Christensen, N. L., Bartuska, A. M., Brown, J. H., Carpenter, S., D'Antonio, C., Francis, R., et al. (1996). The report of the Ecological Society of America Committee on the scientific basis for ecosystem management. Ecological Applications, 6, 665–691.

    Article  Google Scholar 

  • Churchfield, S., Hollier, J., & Brown, V. K. (1991). The effects of small mammal predators on grassland invertebrates, investigated by field exclosure experiment. Oikos, 60, 83–290.

    Article  Google Scholar 

  • Churchfield, S., & Rychlik, L. (2006). Diets and coexistence in Neomys and Sorex shrews in Bialowieza forest, eastern Poland. Journal of Zoology, 269, 381–390.

    Article  Google Scholar 

  • Clough, Y., Holzschuh, A., Gabriel, D., Purtauf, T., Kleijn, D., Kruess, A., et al. (2007). Alpha and beta diversity of arthropods and plants in organically and conventionally managed wheat fields. Journal of Applied Ecology, 44, 804–812.

    Article  Google Scholar 

  • Connell, J. H. (1978). Diversity in tropical rain forests and coral reefs – high diversity of trees and corals is maintained only in a non-equilibrium state. Science, 199, 1302–1310.

    Article  CAS  Google Scholar 

  • Ellenberg H. (1996). Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. Stuttgart: Ulmer.

    Google Scholar 

  • Fischer, M., Schreier, E., & Larigauderie, A. (1997). Interdisziplinäre Forschung im “Integrierten Projekt Biodiversität” des Schweizerischen Nationalfonds: Ziele und Strukturen. Zeitschrift für Ökologie und Naturschutz, 6, 247–252.

    Google Scholar 

  • Grime, J. P. (1973). Competitive exclusion in herbaceous vegetation. Nature, 242, 344–347.

    Article  Google Scholar 

  • Hansell, R. I. C., Craine, I. T., & Byers, R. E. (1997). Predicting change in non-linear systems. Environmental Monitoring and Assessment, 46, 175–190.

    Article  CAS  Google Scholar 

  • Hector, A., & Bagchi, R. (2007). Biodiversity and ecosystem multifunctionality. Nature, 448, 188–190.

    Article  CAS  Google Scholar 

  • Hector, A., Schmid, B., Beierkuhnlein, C., Caldeira, M. C., Diemer, M., Dimitrakopoulos, P. G., et al. (1999). Plant diversity and productivity experiments in European grasslands. Science, 286, 1123–1127.

    Article  CAS  Google Scholar 

  • Hendricks, F., Maelfait, J. P., Van Wingerden, W., Schweiger, O., Speelmans, M., Aviron, S., et al. (2007). How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. Journal of Applied Ecology, 44, 340–351.

    Article  Google Scholar 

  • Hendrix, P. F., Parmelee, R. W., Crossley, Jr., D. A., Coleman, D. C., Odum, E. P., & Groffman, P. M. (1986). Detritus food webs in conventional and no-tillage agroecosystems. BioScience, 36, 374–380.

    Article  Google Scholar 

  • Hietel, E., Waldhardt, R., & Otte, A. (2005). Linking socio-economic factors, environment and land cover in the German Highlands, 1945–1999. Journal of Environmental Management, 75, 133–143.

    Article  Google Scholar 

  • Hobbs, R. J., Yates, S., & Mooney, H. A. (2007). Long-term data reveal complex dynamics in grassland in relation to climate and disturbance. Ecological Monographs, 77, 545–568.

    Article  Google Scholar 

  • Hooper, D. U., Chapin, F. S., Ewel, J. J., Hector, A., Inchausti, P., Lavorel, S., et al. (2005). Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecological Monographs, 75, 3–35.

    Article  Google Scholar 

  • Houghton, R. A. (1994). The worldwide extent of land-use change. BioScience, 44, 305–313.

    Article  Google Scholar 

  • Hughes, A. R., Byrnes, J. E., Kirnbro, D. L., & Stachowicz, J. J. (2007). Reciprocal relationships and potential feedbacks between biodiversity and disturbance. Ecology Letters, 10, 849–864.

    Article  Google Scholar 

  • Hunter, M. D., & Price, P. W. (1992). Playing chutes and ladders: Heterogeneity and the relative roles of bottom-up and top-down forces in natural communities. Ecology, 73, 724–732.

    Google Scholar 

  • Hunter, M. L. (1999). Maintaining biodiversity in forest ecosystems Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Kim, E.-S. (2006). Development, potentials, and challenges of the International Long-Term Ecological Research (ILTER) Network. Ecological Research, 21, 788–793.

    Article  Google Scholar 

  • Koskela, E., Ollikainen, M., & Pukkala, T. (2007). Biodiversity conservation in commercial boreal forestry: The optimal rotation age and retention tree volume. Forest Science, 53, 443–452.

    Google Scholar 

  • Kruess, A., & Tscharntke T. (2002). Species richness and parasitism in a fragmented landscape: Experiments and field studies with insects on Vicia sepium. Oecologia, 122, 129–137.

    Article  Google Scholar 

  • Loveland, T. R., Reed, B. C., Brown, J. F., Ohlen, D. O., Zhu, Z., Yang, L., et al. (2005). Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. International Journal of Remote Sensing, 21, 1303–1330.

    Article  Google Scholar 

  • Memmott, J., Waser, N.M., & Price, M. V. (2004). Tolerance of pollination networks to species extinctions. Proceedings of the Royal Society of London, Series B-Biological Sciences, 271, 2605–2611.

    Article  Google Scholar 

  • Millennium Ecosystem Assessment. (2005). Ecosystems and human well-being. Washington, DC: Island Press.

    Google Scholar 

  • Mitchell, T. D., & Jones, P. D. (2005). An improved method of constructing a database of monthly climate observations and associated high-resolution grids. International Journal of Climatology, 25, 693–712.

    Article  Google Scholar 

  • Mittelbach, G. G., Steiner, C. F., Scheiner, S. M., Gross, K. L., Reynolds, H. L., Waide, R. B., et al. (2001). What is the observed relationship between species richness and productivity? Ecology, 82, 2381–2396.

    Article  Google Scholar 

  • Murdoch, W. W., Peterson, C. H., & Evans, F. C. (1972). Diversity and pattern in plants and insects. Ecology, 53, 819–829.

    Article  Google Scholar 

  • Naeem, S., Thompson, L. J., Lawler, S. P. Lawton, J. H., & Woodfin, R. M. (1994). Declining biodiversity can alter the performance of ecosystems. Nature, 368, 734–737.

    Article  Google Scholar 

  • Perner, J., Wytrykush, C., Kahmen, A., Buchmann, N., Egerer, I., Creutzburg, S., et al. (2005). Effects of plant diversity, plant productivity and habitat parameters on arthropod abundance in montane European grasslands. Ecography, 28, 1–14.

    Article  Google Scholar 

  • Poschlod, P., Bakker, J. P., & Kahmen, S. (2005). Changing land use and its impact on biodiversity. Basic and Applied Ecology, 6, 93–98.

    Article  Google Scholar 

  • Prendergast, J. R., Quinn, R. M., Lawton, J. H., Eversham, B. C., & Gibbons, D. W. (1993). Rare species, the coincidence of diversity hotspots and conservation strategies. Nature, 365, 335–337.

    Article  Google Scholar 

  • Proulx, M., & Mazumber, A. (1998). Reversal of grazing impact on plant species richness in nutrient-poor vs. nutrient-rich ecosystems. Ecology, 79, 2581–2592.

    Article  Google Scholar 

  • Risch, S. J., Andow, D., & Altieri, M. A. (1983). Agroecosystem diversity and pest-control – data, tentative conclusions, and new research directions. Environmental Entomology, 12, 625–629.

    Google Scholar 

  • Root, R. B. (1973). Organization of a plant-arthropod association in simple and diverse habitats – fauna of Collards (Brassica oleracea). Ecological Monographs, 43, 95–120.

    Article  Google Scholar 

  • Roscher, C., Temperton, V. M., Scherer-Lorenzen, M., Schmitz, M., Schumacher, J., Schmid, B., et al. (2005). Overyielding in experimental grassland communities – irrespective of species pool or spatial scale. Ecology Letters, 8, 419–429.

    Article  Google Scholar 

  • Rosenzweig, M. L. (1995). Species diversity in space and time. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Rudmann-Maurer, K., Weyand, A., Fischer, M., & Stöcklin, J. (2008). The role of landuse and natural determinants for grassland vegetation composition in the Swiss Alps. Basic and Applied Ecology, 9, 494–503..

    Article  Google Scholar 

  • Sala, O. E., Chapin, F. S., Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., et al. (2000). Biodiversity – Global biodiversity scenarios for the year 2100. Science, 287, 1770–1774.

    Article  CAS  Google Scholar 

  • Schimel, D., Hargrove, W., Hoffman, F., & MacMahon, J. (2007). NEON: A hierarchically designed national ecological network. Frontiers in Ecology and the Environment, 5, 59.

    Article  Google Scholar 

  • Schmid, B. (2002). The species richness-productivity controversy. Trends in Ecology & Evolution, 17, 113–114.

    Article  Google Scholar 

  • Schröter, D., Cramer, W., Leemans, R., Prentice, I. C., Araujo, M. B., Arnell, N. W., et al. (2005). Ecosystem service supply and vulnerability to global change in Europe. Science, 310, 1333–1337.

    Article  Google Scholar 

  • Schulze, W. X., Gleixner, G., Kaiser, K., Guggenberger, G., Mann, M., & Schulze, E.-D. (2005). A proteomic fingerprint of dissolved organic carbon and of soil particles. Oecologia, 142, 335–343.

    Article  Google Scholar 

  • Seabloom, E. W., & Reichman, O. J. (2001). Simulation models of the interactions between herbivore foraging strategies, social behaviour, and plant community dynamics. American Naturalist, 157, 76–96.

    Article  CAS  Google Scholar 

  • Seabloom, E. W., & Richards, S. A. (2003). Multiple stable equilibria in grasslands mediated by herbivore population dynamics and foraging behaviour. Ecology, 84, 2891–2904.

    Article  Google Scholar 

  • Senn, J., & Suter, W. (2003). Ungulate browsing on silver fir (Abies alba) in the Swiss Alps: Beliefs in search of supporting data. Forest Ecology and Management, 181, 151–164.

    Article  Google Scholar 

  • Shucksmith, M., Thomson, K. J., & Roberts, D. (Eds.) (2005). The CAP and the regions: The territorial impact of the common agricultural policy. Wallingford: CABI Publishing.

    Google Scholar 

  • Siemann, E. (1998). Experimental tests of effects of plant productivity and diversity on grassland arthropod diversity. Ecology, 79, 2057–2070.

    Article  Google Scholar 

  • Siemann, E., Tilman, D., Haarstad, J., & Ritchie, M. (1998). Experimental tests of the dependence of arthropod diversity on plant diversity. American Naturalist, 152, 738–750.

    Article  CAS  Google Scholar 

  • Sims, R. E. H., Hastings, A., Schlamadinger, B., Taylor, G., & Smith, P. (2006). Energy crops: Current status and future prospects. Global Change Biology, 12, 2054–2076.

    Article  Google Scholar 

  • Smeets, E. M. W., Faaij, A. P. C., & Lewandowski, I. M. (2004). A quickscan of global bioenergy potentials to 2050 – an analysis of the regional availability of biomass resources for export in relation to the underlying factors. Utrecht: Utrecht University.

    Google Scholar 

  • Stöcklin, J., Bosshard, A., Klaus, G., Rudmann-Maurer, K., & Fischer, M. (2007). Landnutzung und biologische Vielfalt in den Alpen – Fakten, Perspektiven, Empfehlungen. Zürich: vdf Verlag.

    Google Scholar 

  • Suding, K. N., Collins, S. L., Gough, L., Clark, C., Cleland, E. E., Gross, K. L., et al. (2005). Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proceedings of the National Academy of Sciences of the United States of America, 102, 4387–4392.

    Article  CAS  Google Scholar 

  • Thuiller, W. (2007). Biodiversity – Climate change and the ecologist. Nature, 448, 550–552.

    Article  CAS  Google Scholar 

  • Tilman, D., Reich, P. B., Knops, J., Wedin, D., Mielke, T., & Lehman, C. (2001). Diversity and productivity in a long-term grassland experiment. Science, 294, 843–845.

    Article  CAS  Google Scholar 

  • Tylianakis, J. M., Tscharntke, T., Lewis, O. T. (2007). Habitat modification alters the structure of tropical host-parasitoid food webs. Nature, 445, 202–205.

    Article  CAS  Google Scholar 

  • Van Valen, L. (1965). Morphological variation and width of ecological niche. American Naturalist, 99, 377–390.

    Article  Google Scholar 

  • Vellend, M. (2003). Island biogeography of genes and species. American Naturalist, 162, 358–365.

    Article  Google Scholar 

  • Vellend, M., & Geber, M. A. (2005). Connections between species diversity and genetic diversity. Ecology Letters, 8, 767–781.

    Article  Google Scholar 

  • Völkl, W., Zwölfer, H., Romstöck-Völkl, M., & Schmelzer, C. (1993). Habitat management in calcareous grasslands – effects on the insect community developing in flower heads of Cynarea. Journal of Applied Ecology, 30, 307–315.

    Article  Google Scholar 

  • Waser, N. M., & Ollerton, J. (2006). Plant-pollinator interactions: From specialization to generalization. Chicago: University of Chicago Press.

    Google Scholar 

  • Wilson, E. O. (2001). The diversity of life. London: Penguin Press Science.

    Google Scholar 

  • Zeiter, M., Stampfli, A., & Newbery, D. M. (2006). Recruitment limitation constrains local species richness and productivity in dry grassland. Ecology, 87, 942–951.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft DFG for funding (SPP 1374), our institutions for administrating the exploratories, the participants of the exploratory project for their excellent and dedicated work, the authorities of the biosphere reserve Schorfheide-Chorin and the National Park Hainich and the START team of the biosphere area Schwäbische Alb for support, Sonja Gockel, Konstans Wells and Andreas Hemp for maps, Annett Börner and Ilka Mai for graphs and editorial help and Bernhard Schmid and Mark van Kleunen for comments on the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Fischer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Fischer, M. et al. (2010). Exploratories for Large-Scale and Long-Term Functional Biodiversity Research. In: Müller, F., Baessler, C., Schubert, H., Klotz, S. (eds) Long-Term Ecological Research. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8782-9_29

Download citation

Publish with us

Policies and ethics