Conceptualising Long-Term Socio-ecological Research (LTSER): Integrating the Social Dimension

  • Simron J. SinghEmail author
  • Helmut Haberl
  • Veronika Gaube
  • Clemens M. Grünbühel
  • Petru Lisivieveci
  • Julia Lutz
  • Robin Matthews
  • Michael Mirtl
  • Angheluta Vadineanu
  • Martin Wildenberg


In order to support the emerging network of long-term ecological research (LTER) sites across Europe, the European Union has launched ALTER-Net, a network aiming at lasting integration of long-term socio-economic, ecological and biodiversity research. Due to its high population density and long history of human habitation, however, Europe’s ecosystems are generally intensively used. Social and natural drivers are so inextricably intertwined that the notion of ‘socio-ecological’ systems is appropriate. Traditional natural science-based approaches are insufficient to understand these integrated systems, as they cannot adequately capture their relevant socio-economic dimensions. This is particularly relevant because the EU launched ALTER-Net has an explicit aim to support sustainability, a goal that requires integration of socio-economic and ecological dimensions. As such, LTER is challenged to significantly expand its focus from ecological to socio-ecological systems, thus transforming itself from LTER to long-term socio-ecological research or LTSER. In order to support this transformation, this chapter explores several approaches for conceptualising socio-economic dimensions of LTSER. It discusses how the socio-economic metabolism approach can be combined with theories of complex adaptive systems to generate heuristic models of society–nature interaction which can then be used to integrate concepts from the social sciences. In particular, the chapter discusses possible contributions from the fields of ecological anthropology and ecological economics and shows how participatory approaches can be integrated with innovative agent-based modelling concepts to arrive at an integrated representation of socio-ecological systems that can help to support local communities to move towards sustainability.


Agent-based modelling Complex adaptive systems Participation Long-term ecological research (LTER) Long-term socio-ecological research (LTSER) Society–nature interaction Socio-economic metabolism 



We acknowledge financial support by ALTER-Net, a Network of Excellence funded by the EU within its sixth Framework Programme, by the Austrian Federal Ministry of Education, Science and Culture within the projects ‘partizipA’ (Cultural Landscapes Research) and the project ‘LTSER Eisenwurzen’ (proVISION). This research also contributes to the Global Land Project (GLP). We thank H. Adensam, M. Fischer-Kowalski, K.H. Erb, S. Gingrich and F. Krausmann for useful discussions.


  1. Abel, T. (1998). Complex adaptive systems, evolutionism, and ecology within anthropology: Interdisciplinary research for understanding cultural and ecological dynamics. Georgia Journal of Ecological Anthropology, 2, 6–29.Google Scholar
  2. Adams, W. M., Brockington, D., Dyson, J., & Vira, B. (2003). Managing tragedies: Understanding conflict over common pool resources. Science, 302, 1915–1916.CrossRefGoogle Scholar
  3. Alcamo, J., Kreileman, E., & Leemans, R. (1996). Global models meet global policy: How can global and regional modellers connect with environmental policy makers? What has hindered them? What has helped? Global Environmental Change, 6, 255–259.CrossRefGoogle Scholar
  4. Allen, T. H. F., Bandurski, B., & King, A. (1993). The ecosystem approach: Theory and ecosystem integrity (Report to the Great Lakes Advisory Board). Windsor, Ontario: International Joint Commission.Google Scholar
  5. Axtell, R. L., Andrews, C. J., & Small, M. J. (2002). Agent-based modelling and industrial ecology. Journal of Industrial Ecology, 5, 10–13.CrossRefGoogle Scholar
  6. Ayres, R. U., & Simonis, U. E. (1994). Industrial metabolism: Restructuring for sustainable development. Tokyo, New York, Paris: United Nations University Press.Google Scholar
  7. Barabási, A. L., Albert, R., & Jeong, H. (2000). Scale-free characteristics of random networks: The topology of the world-wide web. Physica A: Statistical Mechanics and its Applications, 281, 69–77.CrossRefGoogle Scholar
  8. Barabási, A.-L., Albert, R., Jeong, H., & Bianconi, G. (2000). Power-law distribution of the World Wide Web. Science, 287, 2115a.CrossRefGoogle Scholar
  9. Barnard, A., & Spencer, J. (1996). Encyclopedia of social and cultural anthropology. New York: Routledge.Google Scholar
  10. Bayliss-Smith, T. (1974). Constrains on population growth: The case of the Polynesian outlier atolls in the precontact period. Human Ecology, 2, 259–295.CrossRefGoogle Scholar
  11. Bennett, J. W. (1976). The Ecological transition: Cultural anthropology and human adaption. New York: Pergamon Press.Google Scholar
  12. Berkes, F., & Folke, C. (1998). Linking social and ecological systems for resilience and sustainability. In F. Berkes & C. Folke (Eds.), Linking social and ecological systems. Management practices and social mechanisms for building resilience (pp. 1–26). Cambridge: Cambridge University Press.Google Scholar
  13. Berkhout, F., Smith, A., & Stirling, A. (2003). Socio-technical regimes and transition contexts. Brighton: University of Sussex.Google Scholar
  14. Bettinger, R. L. (1978). Alternative adaptation strategies in the prehistoric Great Basin. Journal of Anthropological Research, 34, 27–46.Google Scholar
  15. Boserup, E. (1965). The conditions of agricultural growth – the economics of agrarian change under population pressure. London: Earthscan.Google Scholar
  16. Boserup, E. (1981). Population and technological change – A study of long-term trends. Chicago: The University of Chicago Press.Google Scholar
  17. Carpenter, S., Walker, B., Anderies, J. M., & Abel, N. (2001). From metaphor to measurement: Resilience of what to what? Ecosystems, 4, 765–781.CrossRefGoogle Scholar
  18. Catton, W. R., Jr. (2002). Has the Durkheim legacy misled sociology? In R. E. Dunlap, F. H. Buttel, P. Dickens, & A. Gijswijt (Eds.), Sociological theory and the environment. Classical foundations, contemporary insights (pp. 90–115). Lanham, Boulder, New York, Oxford: Rowman & Littlefield.Google Scholar
  19. Clark, W. C., Crutzen, P. J., & Schellnhuber, H.-J. (2004). Science for global sustainability. In H.-J. Schellnhuber, P. J. Crutzen, W. C. Clark, M. Claussen, & H. Held (Eds.), Earth system analysis for sustainability. Report of the 91st Dahlem Workshop (pp. 1–28). Cambridge, MA, London: MIT Press.Google Scholar
  20. Costanza, R., Cumberland, J., Daly, H. E., Goodland, R., & Norgaard, R. B. (1998). An introduction to ecological economics. Boca Raton: CRC Press.Google Scholar
  21. Croll, E., & Parkin, D. (1992). Anthropology, the environment and development. In E. Croll & D. Parkin (Eds.), Bush base: Forest farm (pp. 1–10). London: Routledge.Google Scholar
  22. Daniels, P. L., & Moore, S. (2001). Approaches for quantifying the metabolism of physical economies, Part I: Methodological overview. Journal of Industrial Ecology, 5, 69–93.CrossRefGoogle Scholar
  23. Dearing, J. A., Graumlich, L. J., Grove, R., Grübler, A., Haberl, H., Hole, F., et al. (2006). Integrating socio-environment interactions over centennial timescales: Needs and issues. Dahlem Workshop Report 96. Cambridge, MA: The MIT Press.Google Scholar
  24. Deffuant, G., Huet, S., Bousset, J. P., Henriot, J., Amon, G., & Weisbuch, G. (2002). Agent-based simulation of organic farming conversion in Allier department. In M. Janssen (Ed.), Complexity and ecosystem management: The theory and practice of multi-agent systems (pp. 158–187). Cheltenham, UK: Edward Elgar.Google Scholar
  25. Delbaere, B. (2005). European policy review: Biodiversity research to support European policy. Journal of Nature Conservation, 13, 213–214.CrossRefGoogle Scholar
  26. Descola, P., & Pálsson, G. (1996). Nature and society. Anthropological perspectives. London, New York: Pergamon.Google Scholar
  27. Dietz, T., Ostrom, E., & Stern, P. C. (2003). The struggle to govern the commons. Science, 302, 1907–1912.CrossRefGoogle Scholar
  28. Dunlap, R. E., & Catton, W. R., Jr. (1994). Struggling with human exemptionalism: The rise, decline and revitalizaton of environmental sociology. The American Sociologist, 25, 5–29.CrossRefGoogle Scholar
  29. Dunlap, R. E., & Catton, W. R. (2002). Which function(s) of the environment do we study? A comparison of environmental and natural resource sociology. Society and Natural Resources, 15, 239–249.CrossRefGoogle Scholar
  30. Dunne, J. A., Williams, R. J., Martinez, N. D. (2002). Network structure and biodiversity loss in food webs: Robustness increases with connectance. Ecology Letters, 5, 558–567.CrossRefGoogle Scholar
  31. EEA. (1995). Europe’s environment: The Dobris assessment. Copenhagen: European Environment Agency.Google Scholar
  32. Eurostat. (2001). Economy-wide material flow accounts and derived indicators. A methodological guide. Luxembourg: Office for Official Publications of the European Communities.Google Scholar
  33. Fischer-Kowalski, M. (1997a). Dynamik und Selbststeuerung industrieller Gesellschaften. In M. Fischer-Kowalski, H. Haberl, W. Hüttler, H. Payer, H. Schandl, V. Winiwarter, & Zangerl-Weisz, H. (Eds.), Gesellschaftlicher Stoffwechsel und Kolonisierung von Natur. Ein Versuch in Sozialer Ökologie (pp. 203–221). Amsterdam: Gordon & Breach Fakultas.Google Scholar
  34. Fischer-Kowalski, M. (1997b). Society’s metabolism: On the childhood and adolescence of a rising conceptual star. In M. Redclift & G. R. Woodgate (Eds.), The international handbook of environmental sociology (pp. 119–137). Cheltenham, Northhampton: Edward Elgar.Google Scholar
  35. Fischer-Kowalski, M., & Haberl, H. (1997). Tons, joules and money: Modes of production and their sustainability problems. Society and Natural Resources, 10, 61–85.CrossRefGoogle Scholar
  36. Fischer-Kowalski, M., & Haberl, H. (2006). Global environmental change and socio-ecological transitions. Cheltenham: Edward Elgar.Google Scholar
  37. Fischer-Kowalski, M., Haberl, H., Hüttler, W., Payer, H., Schandl, H., Winiwarter, V., et al. (1997). Gesellschaftlicher Stoffwechsel und Kolonisierung von Natur. Ein Versuch in Sozialer Ökologie. Amsterdam: Gordon & Breach Fakultas.Google Scholar
  38. Fischer-Kowalski, M., & Weisz, H. (1999). Society as hybrid between material and symbolic realms. Toward a Theoretical Framework of Society-Nature Interaction. Advances in Human Ecology, 8, 215–251.Google Scholar
  39. Folke, C., Carpenter, S., Elmqvist, T., Gunderson, L. H., Holling, C. S., Walker, B., et al. (2002). Resilience and sustainable development: Building adaptive capacity in a world of transformations. Ambio, 31, 437–440.Google Scholar
  40. Foster, D., Swanson, F., Aber, J., Burke, I., Brokaw, N., Tilman, D., et al. (2003). The importance of land-use legacies to ecology and conservation. BioScience, 53, 77–88.CrossRefGoogle Scholar
  41. Friedman, J. (1974). Marxism, structuralism and vulgar materialism. Man, 9, 444–469.CrossRefGoogle Scholar
  42. Funtowicz, S. O., & Ravetz, J. R. (1993). Science for the post-normal age. Futures, 25, 739–755.CrossRefGoogle Scholar
  43. Gaube, V., Adensam, H., Erb, K.-H., & Haberl, H. (2005, August). Modelling the impacts of CAP 2006 on sustainable regional development considering land use change, social structure and economic performance. An Austrian case study. Paper presented at the “45th Congress of the Regional Science Association”, Amsterdam.Google Scholar
  44. Gaube, V., Kaiser, C., Wildenberg, M., Adensam, H., Fleissner, P., Kobler, J., et al. (2009). Combining agent-based and stock-flow modelling approaches in a participative analysis of the integrated land system in Reichraming, Austria. Landscape Ecology, 24(9), 1149–1165.Google Scholar
  45. Granovetter, M. (1973). The strength of weak ties. American Journal of Sociology, 78, 1360–1380.CrossRefGoogle Scholar
  46. Granovetter, M. (1995). Getting a job: A study of contacts and careers. Chicago: University of Chicago Press.Google Scholar
  47. Greenland, D., & Kittel, T. G. F. (2002). Temporal variability of climate at the US Long-Term Ecological Research (LTER) sites. Climate Research, 19, 213–231.CrossRefGoogle Scholar
  48. Gruber, B. (1998). Die Rohstoffe der oberösterreichischen Eisenwurzen. In: R. Sandgruber (Ed.), Land der Hämmer – Heimat Eisenwurzen. Die Oberösterreichische Landesausstellung 1998 und die Region Pyhrn-Eisenwurzen (pp. 24–35). Salzburg: Residenz-Verlag.Google Scholar
  49. Grünbühel, C. M., Haberl, H., Schandl, H., & Winiwarter, V. (2003). Socio-economic metabolism and colonization of natural processes in SangSaeng village: Material and energy flows, land use, and cultural change in Northeast Thailand. Human Ecology, 31, 53–87.CrossRefGoogle Scholar
  50. Gunderson, L., & Holling, C. S. (2002). Panarchy. Understanding transformations in human and natural systems. Washington, DC: Island Press.Google Scholar
  51. Haberl, H. (1997). Human propriation of net primary production as an environmental indicator: Implications for sustainable development. Ambio, 26, 143–146.Google Scholar
  52. Haberl, H. (2001a). The energetic metabolism of societies, Part I: Accounting concepts. Journal of Industrial Ecology, 5, 11–33.CrossRefGoogle Scholar
  53. Haberl, H. (2001b). The energetic metabolism of societies, Part II: Empirical examples. Journal of Industrial Ecology, 5, 71–88.CrossRefGoogle Scholar
  54. Haberl, H., Erb, K.-H., Krausmann, F., Loibl, W., Schulz, N. B., & Weisz, H. (2001). Changes in ecosystem processes induced by land use: Human appropriation of net primary production and its influence on standing crop in Austria. Global Biogeochemical Cycles, 15(4), 929–942..CrossRefGoogle Scholar
  55. Haberl, H., Fischer-Kowalski, M., Krausmann, F., Weisz, H., & Winiwarter, V. (2004). Progress towards sustainability? What the conceptual framework of material and energy flow accounting (MEFA) can offer. Land Use Policy, 21, 199–213.CrossRefGoogle Scholar
  56. Haberl, H., Winiwarter, V., Andersson, K., Ayres, R. U., Boone, C., Castillo, A., et al. (2006). From LTER to LTSER: Conceptualizing the socioeconomic dimension of long-term socioecological research. Ecology and Society, 11, 13. From URL: Scholar
  57. Haberl, H., Gaube, V., Díaz-Delgado, R., Krauze, K., Neuner, A., Peterseil, J., et al. (2009). Towards an integrated model of socioeconomic biodiversity drivers, pressures and impacts. A feasibility study based on three European long-term socio-ecological research platforms. Ecological Economics, 68(6), 1797–1812.Google Scholar
  58. Hall, C. A. S. (1995). Maximum Power. The Ideas and Applications of H.T. Odum. Niwot, Colorado: The University Press of Colorado.Google Scholar
  59. Hall, C. A. S., Cleveland, C. J., & Kaufmann, R. K. (1986). Energy and resource quality, the ecology of the economic process. New York: Wiley Interscience.Google Scholar
  60. Hare, M., & Pahl-Wostl, C. (2002). Stakeholder categorisation in participatory integrated assessment processes. Integrated Assessment, 3, 50–62.CrossRefGoogle Scholar
  61. Hobbie, J. E., Carpenter, S. R., Grimm, N. B., Gosz, J. R., & Seastedt, T. R. (2003). The US long term ecological research program. BioScience, 53, 21–32.CrossRefGoogle Scholar
  62. Holling, C. S. (1973). Resilience and stability of ecological systems. Annual Review of Ecological Systematics, 4, 1–24.CrossRefGoogle Scholar
  63. Holling, C. S. (1986). The resilience of terrestrial ecosystems: Local surprise and global change. In W. C. Clark & R. E. Munn (Eds.), Sustainable development of the biosphere (pp. 292–320). Cambridge: Cambridge University Press.Google Scholar
  64. Holling, C. S. (2001). Understanding the complexity of economic, ecological, and social systems. Ecosystems, 4, 390–405.CrossRefGoogle Scholar
  65. Holten-Andersen, J., Paalby, H., Christensen, N., Wier, M., & Andersen, F.M. (1995). Recommendations on Strategies for Integrated Assessment of Broad Environmental Problems. Report Submitted to the European Environmental Agency (EEA) by the National Environmental Research Institute (NERI). Copenhagen: National Environmental Research Institute.Google Scholar
  66. Huber, J. (1989). Eine sozialwissenschaftliche Interpretation der Humanökologie. In B. Glaeser(Ed.), Humanökologie, Grundlagen präventiver Umweltpolitik (pp. 57–75). Opladen: Westdeutscher Verlag.Google Scholar
  67. Janssen, A. M. (2004). Agent-based models. In J. Proops & P. Safonov (Eds.), Modelling in ecological economics (pp. 155–172). Cheltenham, UK, Northampton, MA, USA: Edward Elgar.Google Scholar
  68. Kasemir, B., Jäger, J., Jaeger, C. C., & Gardner, M. T. (2003). Public participation in sustainability science. A handbook. Cambridge, UK: Cambridge University Press.Google Scholar
  69. Kates, R. W., Clark, W. C., Corell, R., Hall, J. M., Jaeger, C. C., Lowe, I., et al. (2001). Sustainability science. Science, 292, 641–642.CrossRefGoogle Scholar
  70. Kauffmann, S. (1995). At home in the universe: The search for laws of complexity. London: Penguin Books.Google Scholar
  71. Kay, J. J., Regier, H. A., Boyle, M., & Francis, G. (1999). An ecosystem approach for sustainability: Addressing the challenge of complexity. Futures, 31, 721–742.CrossRefGoogle Scholar
  72. Koestler, A. (1967). The ghost in the machine. London, UK: Arkana.Google Scholar
  73. Krausmann, F. (2004). Milk, manure and muscular power. Livestock and the industrialization of agriculture. Human Ecology, 32, 735–773.CrossRefGoogle Scholar
  74. Krausmann, F., & Haberl, H. (2002). The process of industrialization from the perspective of energetic metabolism. Socioeconomic energy flows in Austria 1830–1995. Ecological Economics, 41, 177–201.CrossRefGoogle Scholar
  75. Krausmann, F., Haberl, H., Erb, K.-H., & Wackernagel, M. (2004). Resource flows and land use in Austria 1950–2000: Using the MEFA framework to monitor society-nature interaction for sustainability. Land Use Policy, 21, 215–230.CrossRefGoogle Scholar
  76. Krech, S. I. (1978). Disease, starvation and Northern Athapaskan social organisation. American Ethnology, 5, 710–732.CrossRefGoogle Scholar
  77. Lees, S. H. (1974). Hydraulic development as a process of response. Human Ecology, 2, 159–175.CrossRefGoogle Scholar
  78. Luhmann, N. (1986). Ökologische Kommunikation: Kann die moderne Gesellschaft sich auf ökologische Gefährdungen einstellen? Opladen: Westdeutscher Verlag.Google Scholar
  79. Luhmann, N. (1995). Social systems. Stanford: Stanford University Press.Google Scholar
  80. Luks, F. (1996). Post-Normal Science, Dematerialisierung und die Ökonomie – Über den (wirtschafts) wissenschaftlichen Umgang mit Umweltproblemen. In J. Köhn & M. J. Welfens (Eds.), Neue Ansätze in der Umweltökonomie (pp. 89–108). Marburg: Metropolis.Google Scholar
  81. Martens, P., & Rotmans, J. (2002). Transitions in a globalising world. Lisse: Swets & Zeitlinger Publishers.Google Scholar
  82. Martinez-Alier, J. (1987). Ecological economics. Energy, environment and society. Oxford: Blackwell.Google Scholar
  83. Martinez-Alier, J. (Ed.) (1990). Ecological economics. Energy, evironment and society. Oxford, UK; Cambridge, USA: Blackwell.Google Scholar
  84. Matthews, E., Amann, C., Fischer-Kowalski, M., Bringezu, S., Hüttler, W., Kleijn, R., et al. (2000). The weight of nations: Material outflows from industrial economies. Washington, DC: World Resources Institute.Google Scholar
  85. Matthews, R. (2006). The People and Landscape Model (PALM): An agent-based spatial model of livelihood generation and resource flows in rural households and their environment. Ecological Modelling, 194, 329–343.CrossRefGoogle Scholar
  86. Matthews, R., & Selman, P. (2006). Landscape as a focus for integrating human and environmental processes. Journal of Agricultural Economics, 57, 199–212.CrossRefGoogle Scholar
  87. McCann, K. S. (2000). The diversity-stability debate. Nature, 405, 228–233.CrossRefGoogle Scholar
  88. McConnell, W. (2001). Agent-based models of land-use and land-cover change. Belgium: LUCC International Project Office).Google Scholar
  89. Meyer, W. B., & Turner, B. L. I. (1994). Changes in land use and land cover, a global perspective. Cambridge: Cambridge University Press.Google Scholar
  90. Millennium Ecosystem Assessment. (2005). Ecosystems and human well-being. Washington, DC: Island Press.Google Scholar
  91. Netting, R. M. (1993). Smallholders, householders. farm families and the ecology of intensive, sustainable agriculture. Stanford: Stanford University Press.Google Scholar
  92. Norgaard, R. B. (1994). The coevolution of economic and environmental systems and the emergence of unsustainability. In R. England (Ed.), Evolutionary concepts in contemporary economics (pp. 213–225). Ann Arbor: University of Michigan Press.Google Scholar
  93. NRC. (2004). NEON, addressing the nations environmental challenges. Washington, DC: The National Academy Press.Google Scholar
  94. Odum, H. T., & Pinkerton, R. C. (1955). Time’s speed regulator: The Optimum efficiency for maximum power output in physical and biological systems. American Scientist, 43, 331–343.Google Scholar
  95. Oliver-Smith, A. (1977). Traditional agriculture, central places, and postdisaster urban relocation in Peru. American Ethnology, 4, 102–116.CrossRefGoogle Scholar
  96. Orlove, B. S. (1980). Ecological anthropology. Annual Review of Anthropology, 9, 235–273.CrossRefGoogle Scholar
  97. Orlove, B. S., & Custtred, G. (1980). The alternative model of agrarian society in the Andes: Households, networks and corporate groups. In B. S. Orlove & G. Custtred (Eds.), Land and power in Latinamerica: Agrerian economics and social processes in the Andes (pp. 31–54). New York: Holmes & Meier.Google Scholar
  98. Ostrom, E. (1996). Governing the commons. The evolution of institutions for collective action. Cambridge: Press Syndicate of the University of Cambridge.Google Scholar
  99. Pahl-Wostl, C. (2002). Participative and stakeholder-based policy design, evaluation and modelling processes. Integrated Assessment, 3, 3–14.CrossRefGoogle Scholar
  100. Parris, T. M., & Kates, R. W. (2003). Characterizing and measuring sustainable development. Annual Review of Environment and Resources, 28, 559–586.CrossRefGoogle Scholar
  101. Polanyi, K. (1957). The great transformation: The political and economic origins of our time. Boston: Beacon Press.Google Scholar
  102. Prigogine, I. (1976). Order through fluctuations: Self-organisation and social systems. In E. Jantsch & C. H. Waddington (Eds.), Evolution and consciousness: Human systems in transition (pp. 93–130). Reading, MA: Addison-Wesley.Google Scholar
  103. Rappaport, R. A. (1967). Pigs for the ancestors. New Haven: Yale University Press.Google Scholar
  104. Rappaport, R. A. (1971). The flow of energy in an agricultural society. Scientific American, 225, 116–136.CrossRefGoogle Scholar
  105. Redman, C. L. (1999). Human dimensions of ecosystem studies. Ecosystems, 2, 296–298.CrossRefGoogle Scholar
  106. Redman, C. L., Grove, J. M., & Kuby, L. H. (2004). Integrating social science into the long-term ecological research (LTER) network: Social dimensions of ecological change and ecological dimensions of social change. Ecosystems, 7, 161–171.CrossRefGoogle Scholar
  107. Reyna, S. P. (1975). Making do when the rain stops: Adjustment of the domestic structure to climate variation among the Barma. American Ethnologist, 2, 535–551.CrossRefGoogle Scholar
  108. Rotmans, J., Kemp, R., & Van Asselt, M. (2001). More evolution than revolution: Transition management in public policy. Foresight, 3, 15–31.CrossRefGoogle Scholar
  109. Schandl, H., & Grünbühel, C. M. (2005). Using land-time budgets to analyse farming systems and poverty alleviation policies in Lao PDR. International Journal of Global Environmental Issues, 5, 142–180.CrossRefGoogle Scholar
  110. Schandl, H., & Schulz, N. B. (2002). Changes in United Kingdom´s natural relations in terms of society’s metabolism and land use from 1850 to the present day. Ecological Economics, 41, 203–221.CrossRefGoogle Scholar
  111. Scheffer, M., Carpenter, S., Foley, J. A., Folke, C., & Walker, B. (2001). Catastrophic shifts in ecosystems. Nature, 413, 591–596.CrossRefGoogle Scholar
  112. Schellnhuber, H. J. (1999). ‘Earth system’ analysis and the second Copernican revolution. Nature, 402, C19-C23.CrossRefGoogle Scholar
  113. Schlesinger, W. H. (1997). Biogeochemistry – An analysis of global change. San Diego: Academic Press.Google Scholar
  114. Singh, S. J. (2003). In the sea of influence: A world system perspective of the Nicobar Islands. Lund: Lund University.Google Scholar
  115. Steward, J. H. (1955). Theory of culture change. The methodology of multilinear evolution. Urbana: University of Illinois Press.Google Scholar
  116. Teich, M., Porter, R., & Gustafsson, B. (1997). Nature and society in historical context. Cambridge: Cambridge University Press.Google Scholar
  117. Tilly, C. (1988). Durable inequality. Berkeley: University of California Press.Google Scholar
  118. Turner, B. L. I., Matson, P. A., McCarthy, J. J., Corell, R. W., Christensen, L., Eckley, N., et al. (2003). Illustrating the coupled human-environment system for vulnerability analysis: Three case studies. Proceedings of the National Academy of Science, 100, 8080–8085.CrossRefGoogle Scholar
  119. UNEP (2002). Global Environment Outlook 3. Past, present and future perspectives. London: United Nations Environment Programme (UNEP). London: Earthscan.Google Scholar
  120. Vadineanu, A. (1998). Sustainable development, theory and practice. Bucarest: Bucarest University Press.Google Scholar
  121. Vadineanu, A. (2001). Sustainable development: Theory and practice regarding the transition of socio-economic systems towards sustainability. Bucarest: UNESCO – CEPES.Google Scholar
  122. Vadineanu, A., Adamescu, M. C., Cazacu, C., Bodescu, F., & Danielescu, S. (2001). Past and future management of the Lower Danube Wetlands. Working paper of the Departement of System Ecology. Bucarest: Bucarest University.Google Scholar
  123. Vadineanu, A., Adamescu, M. C., Vadineanu, R. S., Christofor, S., & Negrei, C. (2003). Past and future management of the Lower Danube Wetland System: A bioeconomic appraisal. The Journal of Interdisciplinary Economics, 14, 415–447.Google Scholar
  124. Van der Leeuw, S. E. (2004). Why Model? Cybernetics and Systems, 35, 117–128.CrossRefGoogle Scholar
  125. Van der Leeuw, S. E., & Aschan-Leygonie, C. (2005). A long-term perspective on resilience in socio-natural systems. In H. Liljenström, & U. Svedin (Eds.), Micro, Meso, Macro. Addressing Complex Systems Couplings (pp. 227–264). New Jersey: World Scientific.Google Scholar
  126. Van Keulen, H. (1993). Options for agricultural development: A new quantitative approach. In F. W. T. PenningDeVries, P. Teng, & K. Metselaar (Eds.), Systems approaches for agricultural development (pp. 355–365). Dordrecht: Kluwer Academic Publishers.Google Scholar
  127. Varela, F. G., Maturana, H. R., & Uribe, R. (1974). Autopoiesis: The organization of living systems, its characterization and a model. Biosystems, 5, 187–196.CrossRefGoogle Scholar
  128. Vayda, A. P., & MacKay, B. (1977). Problems in the identification of environmental problems. In T. P. Bayliss-Smith & R. G. A. Feachem (Eds.), Subsistence and survival: Rural ecology in the Pacific (pp. 476–498). New York, London: Academic.Google Scholar
  129. Vitousek, P. M., Ehrlich, P. R., Ehrlich, A. H., & Matson, P. A. (1986). Human appropriation of the products of photosynthesis. BioScience, 36, 363–373.CrossRefGoogle Scholar
  130. Wackernagel, M. (1999). Ecological economics forum: Why sustainability analysis must include biophysical assessments. Ecological Economics, 29, 13–15.CrossRefGoogle Scholar
  131. Wackernagel, M., Schulz, N. B., Deumling, D., Linares, A. C., Jenkins, M., Kapos, V., et al. (2002). Tracking the ecological overshoot of the human economy. Proceedings of the National Academy of Science, 99, 9266–9271.CrossRefGoogle Scholar
  132. Waddell, E. (1975). How the Enga cope with frost: Responses to climatic perturbations in the Central Highlands of New Guinea. Human Ecology, 3, 249–73.CrossRefGoogle Scholar
  133. Walker, B., Holling, C. S., Carpenter, S. R., & Kinzig, A. (2004). Resilience, adaptability and transformability in social-ecological Systems. Ecology and Society, 9(2), 5. Retrieved from URL: Scholar
  134. Walker, B., & Meyers, J. A. (2004). Thresholds in Ecological and Social-Ecological Systems: A Developing Database. Science and Society, 9(2), 3. Retrieved from URL: Scholar
  135. Waltner-Toews, D., & Kay, J. J. (2005). The evolution of an ecosystem approach: The diamond schematic and an adaptive methodology for ecosystem sustainability and health. Ecology and Society, 10(1), 38. Retrieved from URL: Scholar
  136. Waltner-Toews, D., Kay, J. J., Neudoerffer, C., & Gitau, T. (2003). Perspective changes everything: Managing ecosystems from the inside out. Frontiers in Ecology and Environment, 1, 23–30.CrossRefGoogle Scholar
  137. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of `small-world’ networks. Nature, 393, 440–442.CrossRefGoogle Scholar
  138. WCED. (1987). World commission on environment and development: Our common future. New York: Oxford University Press.Google Scholar
  139. Weisz, H. (2002). Gesellschaft-Natur Koevolution: Bedingungen der Möglichkeit nachhaltiger Entwicklung. Dissertation, Humboldt Universität, Berlin..Google Scholar
  140. Weisz, H., Fischer-Kowalski, M., Grünbühel, C. M., Haberl, H., Krausmann, F., & Winiwarter, V. (2001). Global environmental change and historical transitions. Innovation – The European Journal of Social Sciences, 14, 117–142.Google Scholar
  141. Weisz, H., Krausmann, F., Amann, C., Eisenmenger, N., Erb, K.-H., Hubacek, K., et al. (2006). The physical economy of the European Union: Cross-country comparison and determinants of material consumption. Ecological Economics, 58, 676–698.CrossRefGoogle Scholar
  142. White, L. A. (1959). The evolution of culture. New York: McGraw-Hill.Google Scholar
  143. Wilbanks, T. J., & Kates, R. W. (1999). Global change in local places: How scale matters. Climatic Change, 43, 601–628.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Simron J. Singh
    • 1
    Email author
  • Helmut Haberl
    • 2
  • Veronika Gaube
    • 2
  • Clemens M. Grünbühel
    • 3
  • Petru Lisivieveci
    • 4
  • Julia Lutz
    • 2
  • Robin Matthews
    • 5
  • Michael Mirtl
    • 6
  • Angheluta Vadineanu
    • 4
  • Martin Wildenberg
    • 2
  1. 1.Institute of Social Ecology, Faculty of Interdisciplinary StudiesKlagenfurt UniversityViennaAustria
  2. 2.Institute of Social Ecology, Klagenfurt UniversityViennaAustria
  3. 3.Sustainable Ecosystems DivisionCommonwealth Scientific and Industrial Research Organisation (CSIRO)CanberraAustralia
  4. 4.Department of Systems Ecology and Sustainability (DSES)University of BucharestBucharestRomania
  5. 5.Integrated Land Use Systems Group, Macaulay InstituteCraigiebucklerUK
  6. 6.Federal Environment Agency Austria (Umweltbundesamt)WienAustria

Personalised recommendations