Skip to main content

Long-Term Observations of Soil Mesofauna

  • Chapter
  • First Online:
Book cover Long-Term Ecological Research

Abstract

General problems connected with planning, sampling, and data processing of long-term research of soil mesofauna are discussed, based on two case studies: (i) the Bremen study of predatory mites (Gamasina) covering 20 years of secondary succession on a ruderal site in northern Germany and (ii) the Mazsalaca study of the effects of climate warming on Collembola of coniferous stands in the North Vidzeme Biosphere Reserve, Latvia, covering 11 years. The findings from both sites are embedded in an array of environmental data. The results from Bremen document the asynchrony of different biota in successional dynamics. The long-lasting increase of the species numbers of soil predatory mites (Gamasina) is contrasted by a decrease in plant species numbers. In the Baltic forests, climate change is indicated by the dynamics of collembolan community. Gradual decline in species richness has been observed from 1992 to 2002 attributed to global warming. The ‘temporal window’ or time unit to discern changes in soil mesofauna communities seems to span approx. 5 years, highlighting the necessity of long-term observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    C = soil carbon by incineration, N = total nitrogen content, DM= dry mass.

References

  • Allen, T. F. H., & Koonce, J. F. (1973). Multivariate approaches to algal stratagems and tactics in systems analysis of phytoplankton. Ecology, 54, 1234–1246.

    Article  Google Scholar 

  • Anderson, T. W. (1963). The use of factor analysis in the statistical analysis of multiple time series. Psychometrica, 28, 1–25.

    Article  Google Scholar 

  • Anderson, J. M. (1975). The enigma of soil animal species diversity. In J. Vanek (Ed.), Progress in soil zoology (pp. 51–58). The Hague: Junk.

    Google Scholar 

  • André, H. M., Ducarme, X., Anderson, J., Crossley, D., Jr., Koehler, H., Paoletti, M., et al. (2001). Skilled eyes are needed to go on studying the richness for the soil. Nature, 409, 761.

    Article  Google Scholar 

  • Anonymous (1989). Field and Laboratory manual. International cooperative programme on integrated monitoring. Helsinki: National Board of Waters and Environment.

    Google Scholar 

  • Araujo, M. B., & Rahbek, C. (2006). How does climate change affect biodiversity? Science, 313, 1396–1397.

    Article  CAS  Google Scholar 

  • Belsley, D. A., Kuh, E., & Welsch, R. E. (1980). Regression diagnostics. New York: Wiley.

    Book  Google Scholar 

  • Bence, J. R. (1995). Analysis of short time series: Correcting for autocorrelation. Ecology, 76, 628–639.

    Article  Google Scholar 

  • Berryman, A., & Turchin, P. (2001). Identifying the density-dependent structure underlying ecological time series. Oikos, 92, 265–270.

    Article  Google Scholar 

  • Box, G., & Jenkins, G. (1970). Time series analysis: Forecasting and control. San Francisco: Holden-Day.

    Google Scholar 

  • Briones, M. J. I., Ineson, P., & Piearce, T. G. (1997). Effects of climate change on soil fauna; responses of Enchytraeids, Diptera larvae and tardigrades in a transplant experiment. Applied Soil Ecology, 6, 117–134.

    Article  Google Scholar 

  • Bruckner, A. (1998). Augers may bias field samples of soil mesofauna. Pedobiologia, 42, 309–315.

    Google Scholar 

  • Bruckner, G., Barth, G., & Scheibengraf, M. (2000). Composite sampling enhances the confidence of soil microarthropod abundance and species richness estimates. Pedobiologia, 44, 63–74.

    Article  Google Scholar 

  • Catell, R. B. (1951). P-techniques, a new method for analysing the structure of personal motivation. Transactions of the New York Academy of Sciences Psychological Series, 14, 29–34.

    Article  Google Scholar 

  • Christian, A. (1995). Succession of Gamasina in coal mined areas in Eastern Germany. Acta Zoologica Fennica, 196, 380–381.

    Google Scholar 

  • Clements, F. E. (1916). Plant succession: An analysis of the development of vegetation. Carnegie Institution of Washington publication, 242, 1–51.

    Google Scholar 

  • Coleman, D. C., & Hendrix, P. F. (2000). Invertebrates as webmasters in ecosystems. New York: CAB International.

    Book  Google Scholar 

  • Collins, S. L., Micheli, F., & Hartt, L. (2000). A method to determine rates and patterns of variability in ecological communities. Oikos, 91, 285–293.

    Article  Google Scholar 

  • Connell, J. H., & Slatyer, R. O. (1977). Mechanisms of succession in natural communities and their role in community stability and organization. American Naturalist, 111, 1119–1144.

    Article  Google Scholar 

  • Dunger, W. (1975). On the delimination of soil microarthropod cenosis in time and space. In J. Vanek (Ed.), Progress in soil zoology (pp. 43–49). The Hague: Junk.

    Google Scholar 

  • Dunger, W., & Fiedler, H. J. (1997). Methoden der Bodenbiologie. Jena: Gustav Fischer.

    Google Scholar 

  • Dunger, W., Wanner, M., Hauser, H., Hohberg, K., Schulz, H. J., Schwalbe, T., et al. (2001). Development of soil fauna at mine sites during 46 years after afforestation. Pedobiologia, 45, 243–271.

    Article  Google Scholar 

  • Edwards, C. A. (1991). The assessment of populations of soil-inhabiting invertebrates. Agriculture, Ecosystem & Environment, 34, 145–176.

    Article  Google Scholar 

  • Edwards, C. A., & Fletcher, K. E. (1971). A comparison of extraction methods for terrestrial arthropods. In J. Phillipson (Ed.), Methods of study in quantitative soil ecology: Population, production, energy flow (pp. 150–185). Oxford: Blackwell Scientific.

    Google Scholar 

  • Ekschmitt, K. (1998). Population assessment of soil fauna: General criteria for planning of sampling schemes. Applied Soil Ecology, 9, 439–445.

    Article  Google Scholar 

  • Filser, J., Koehler, K., Ruf, A., Römbke, J., Prinzing, A., & Schaefer, M. (2008). Ecological theory meets soil ecotoxicology: A challenge and a chance. Basic and Applied Ecology, 9, 346–355.

    Article  CAS  Google Scholar 

  • Fleischer, A., & Sternberg, M. (2006). The economic impact of global climate change on Mediterranean rangeland ecosystems: A Space-for-Time approach. Ecological Economics, 59, 287–295.

    Article  Google Scholar 

  • Frampton, G. K., van den Brink, P. J., & Gould, P. J. L. (2000). Effects of spring drought and irrigation on farmland arthropods in southern Britain. Journal of Applied Ecology, 37, 865–883.

    Article  Google Scholar 

  • Gotelli, N. J., & Ellison, A. M. (2004). A primer of ecological statistics. Sunderland, MA: Sinauer Associates Inc. Publishers.

    Google Scholar 

  • Greig-Smith, P. (1964). Quantitative plant ecology. London: Butterworths.

    Google Scholar 

  • Gurevitch, J., & Chester, S. T., Jr. (1986). Analysis of repeated measures experiments. Ecology, 67, 251–255.

    Article  Google Scholar 

  • Hairston, N. G., Sr. (1989). Ecological experiments: Purpose, design, and execution. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hampe, A., & Petit, R. J. (2005). Conserving biodiversity under climate change: The rear edge matters. Ecology Letters, 8, 461–467.

    Article  Google Scholar 

  • Hogervorst, R. F., Verhoef, H. A., & VanStraalen, N. M. (1993). Five-year trends in soil arthropod densities in pine forests with various levels of vitality. Biology and Fertility of Soils, 15, 189–195.

    Article  Google Scholar 

  • Huhta, V. (1979). Evaluation of different similarity indices as measures of succession in arthropod communities of the forest floor after clear-cutting. Oecologia (Berlin), 41, 11–23.

    Article  Google Scholar 

  • Irmler, U. (2006). Climatic and litter fall effects on collembolan and oribatid mite species and communities in a beech wood based on a 7 years investigation. European Journal of Soil Biology, 42, 51–62.

    Article  Google Scholar 

  • Johnston, A. E., & Powlson, D. S. (1994). The setting-up, conduct and applicability of long-term, continuing field experiments in agricultural research. In D. J. Greenland, & I. Szabolcs (Eds.), Soil resilience and sustainable land use (pp. 395–421). Wallingford: CAB International.

    Google Scholar 

  • Jongman, R. H., TerBraak, C. J. F., & VanTongren, O. F. R. (1987). Data analysis in community and landscape ecology. Wageningen: Pudoc.

    Google Scholar 

  • Juceviča, E., & Melecis, V. (2002). Long-term dynamics of Collembola in a pine forest ecosystem. Pedobiologia, 46, 365–372.

    Google Scholar 

  • Juceviča, E., & Melecis, V. (2005). Long-tern effects of climate warming on forest soil Collembola. Acta Zoologica Lithuanica, 15(2), 125–127.

    Google Scholar 

  • Juceviča, E., & Melecis, V. (2006). Global warming affect Collembola community: A long-term study. Pedobiologia, 50, 2, 177–184.

    Article  Google Scholar 

  • Kampichler, C., & Geissen, V. (2005). Temporal predictability of soil microarthropod communities in temperate forests. Pedobiologia, 49, 41–50.

    Article  Google Scholar 

  • Karg, W., & Freier, B. (1995). Parasitiforme Milben als Indikatoren für den ökologischen Zustand von Ökosystemen. Mitteilungen aus der Biologischen Bundesanstalt für Land- und Forstwirtschaft Berlin-Dahlem, 308, 1–96.

    Google Scholar 

  • Kaufmann, R. (2002). Glacier foreland colonisation: Distinguishing between short-term and long-term effects of climate change. Oecologia, 130, 470–475.

    Article  Google Scholar 

  • Kennedy, A. D. (1994). Simulated climate change: A field manipulation study of polar microarthropod community response to global warming. Ecography, 17, 131–140.

    Article  Google Scholar 

  • Koehler, H. (1984). Methodische, ökologische und experimentelle Untersuchungen zur Sukzession der Mesofauna der Abdeckschicht einer Bauschuttdeponie unter besonderer Berücksichtigung der Gamasina (Acari, Parasitiformes). Dissertation, University of Bremen.

    Google Scholar 

  • Koehler, H. (1993). Extraktionsmethoden für Bodenmesofauna. Informationen zu Naturschutz und Landschaftspflege in Nordwestdeutschland, 6, 42–52.

    Google Scholar 

  • Koehler, H. (1996). Soil animals and bioindication. In N. M. VanStraalen, & D. A. Krivolutsky (Eds.), Bioindicator systems for soil pollution (pp. 179–188). Dordrecht: Kluwer Academic.

    Chapter  Google Scholar 

  • Koehler, H. (1999). Gamasina in a succession of thirteen years. In J. Bruin, L. P. S. VanDerGeest, & M. Sabelis (Eds.), Ecology and evolution of the Acari (pp. 531–539). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Koehler, H. (2000). Natural regeneration and succession: Results from a 13 yrs study with reference to mesofauna and vegetation and implications for management. Landscape and Urban Planning, 51, 123–130.

    Article  Google Scholar 

  • Koehler, H., & Müller, J. (2003). Entwicklung der Biodiversität während einer 20 jährigen Sukzession als Grundlage für Managementmaßnahmen. Report: BMBF, FKZ 01 LC 0005, 1–241. Bremen: Universität Bremen, Arbeitsgruppe “Ökosystemforschung und Bodenökologie”.

    Google Scholar 

  • Lasebikan, B. A., Belfield, W., & Gibson, N. H. E. (1978). Comparison of relative efficiency of methods for the extraction of soil microarthropods. Revue d’Ecologie et de Biologie du Sol, 15, 39–65.

    Google Scholar 

  • Legendre, P., & Legendre, L. (1998). Numerical ecology. Amsterdam: Elsevier.

    Google Scholar 

  • Likens, G. E. (Ed.). (1988). Long-term studies in ecology. New York: Springer.

    Google Scholar 

  • Lindberg, N. (2003). Soil Fauna and Global Change – Responses to Experimental Drought, Irrigation, Fertilisation and Soil Warming. Dissertation, Swedish University of Agricultural Sciences.

    Google Scholar 

  • Lindberg, N., & Bengtsson, J. (2006). Recovery of forest soil fauna diversity and composition after repeated summer droughts. Oikos, 114, 494–506.

    Article  Google Scholar 

  • Lindsey, J. K. (1993). Models for repeated measurements. Oxford: Oxford University Press.

    Google Scholar 

  • MacFadyen, A. (1961). Improved funnel-type extractors for soil arthropods. Journal of Animal Ecology, 30, 171–184.

    Article  Google Scholar 

  • McCune, B., & Grace, J. B. (2002). Analysis of ecological communities. Gleneden Beach, Oregon: MjM Software Design.

    Google Scholar 

  • McCune, B. (2006). Nonparametric Multiplicative Regression for Habitat Modelling. Retrieved October 1, 2008, from http://www.pcord.com/NPMRintro.pdf.

  • Melecis, V. (1988). System approach in studies of soil Collembola as indicators of industrial pollution. Dissertation, Riga University of Latvia.

    Google Scholar 

  • Melecis, V. (1999). Probleme des Boden-Biomonitorings. In H. Koehler, K. Mathes, & B. Breckling (Eds.), Bodenökologie interdisziplinär (pp. 133–147). Berlin: Springer.

    Chapter  Google Scholar 

  • Müller, J., & Rosenthal, G. (1998). Brachesukzessionen – Prozesse und Mechanismen. Berichte des Institutes für Landschafts-Pflanzenökologie der Universität Hohenheim, 5, 103–132.

    Google Scholar 

  • Musaloiu-E, R., Terzis, A., Szalay, A., Cogan, J., & Gray, J. (2006). Life Under your Feet: A Wireless Soil Ecology Sensor Network. In Proceedings of 3rd Workshop on Embedded Network Sensors (EmNets 2006), May 30–31, 2006 (pp. 51–55). Cambridge, MA: Harvard University.

    Google Scholar 

  • Norusis, M. (2004). SPSS 13.0 statistical procedures companion. Upper Saddle-River, NJ: Prentice Hall.

    Google Scholar 

  • Ozer, S., Szalay, A., Szlavecz, K., Terzis, A., Musaloiu-E, R., & Cogan, J. (2006). Using Data-Cubes in Science: An Example from Environmental Monitoring of the Soil Ecosystem. MSR-TR-2006–134. Retrieved October 1, 2008, from http://ftp://ftp.research.microsoft.com/pub/tr/TR-2005-134.pdf.

  • Pawley, M. D. M. (2006). Systematic sampling in ecology. Dissertation, University of Auckland.

    Google Scholar 

  • Pflug, A., & Wolters, V. (2001). Influence of drought and litter age on Collembola communities. European Journal of Soil Biology, 37, 305–308.

    Article  Google Scholar 

  • Platt, T., & Denman, K. L. (1975). Spectral analysis in ecology. Annual Review of Ecology and Systematics, 6, 189–210.

    Article  Google Scholar 

  • Pollard, E., Lakhani, K. H., & Rothery, P. (1978). The detection of density-dependence from a series of annual censuses. Ecology, 68, 2046–2055.

    Article  Google Scholar 

  • Ponge, I. F. (1973). Application de l’analyse factorielle des correspondences a l’étude des variations annelles les populations de Microarthropodes. Bulletin D’écologie, 4, 319–327.

    Google Scholar 

  • Poveda, K., Stefan-Dewenter, I., Scheu, S., & Tscharntke, T. (2003). Effects of below- and above-ground herbivores on plant growth, flower visitation and seed set. Oecologia, 135, 601–605.

    Google Scholar 

  • Ratti, J. T., & Garton, E. O. (1994). Research and experimental design. In T. A. Bookout (Ed.), Research and management techniques for wildlife and habitat (pp. 1–23). Bethesda, MD: The Wildlife Society.

    Google Scholar 

  • Reichle, D. E., O’Neill, R. V., & Harris, W. F. (1975). Principles of energy and material exchange in ecosystems. In W. H. VanDobben, & R. H. Lowe-McConnell (Eds.), Unifying concepts in ecology (pp. 27–43). The Hague: Dr. W. Junk Publishers.

    Chapter  Google Scholar 

  • Rusek, J. (1993). Air-pollution-mediated changes in alpine ecosystems and ecotones. Ecological Applications, 3, 409–416.

    Article  Google Scholar 

  • SAS Institute Inc. (2004). SAS/STAT® 9.1 User’s Guide. Cary, NC: SAS Institute Inc.

    Google Scholar 

  • Scheffe, H. (1959). The analysis of variance. New York: John Wiley and Sons.

    Google Scholar 

  • Schinner, F., Öhlinger, R., & Kandeler, E. (1993). Bodenbiologische Arbeitsmethoden. Berlin, Heidelberg: Springer.

    Book  Google Scholar 

  • Schroeter, D., Cramer, W., Leemans, R., Prentice, I. C., Araujo, M. B., Arnell, N. W., et al. (2005). Ecosystem service supply and vulnerability to global change in Europe. Science, 310, 1333–1337.

    Article  CAS  Google Scholar 

  • Snedecor , G. W., & Cochran, W. G. (1980). Statistical methods. Ames: The Iowa State University Press.

    Google Scholar 

  • Sokal, R. R., & Rohlf, F. J. (1987). Introduction to biostatistics. New Yorkf: W.H. Freeman & Co.

    Google Scholar 

  • Takeda, H. (1987). Dynamics and maintenance of collembolan communities structure in a forest soil system. Researches on Population Ecology, 29, 291–346.

    Article  Google Scholar 

  • Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., et al. (2004). Extinction risk from climate change. Nature, 427, 145–148.

    Article  CAS  Google Scholar 

  • Thuiller, W., Lavorel, S., Araujo, M. B., Sykes, M. T., & Prentice, I. C. (2005). Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences of the United States of America, 102, 8245–8250.

    Article  CAS  Google Scholar 

  • Tilman, D. (1989). Ecological experimentation: Strengths and conceptual problems. In G. E. Likens (Ed.), Long-term studies in ecology: Approaches and alternatives (pp. 136–157). Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • Überla, K. (1977). Faktorenanalyse. Berlin: Springer Verlag.

    Google Scholar 

  • Usher, M. B. (1969). The efficiency of counting samples of soil micro-arthropods. In G. O. Evans (Ed.), Proceedings of the 2nd International Congress of Acarology, Sutton Bonington, England, 19–25 July, 1967 (pp. 57–60). Budapest: Akademiai Kiado.

    Google Scholar 

  • Vannier, G. (1970). Réactions des microarthropodes aux variations de l’état hydrique du sol: Techniques relatives à l’extraction des arthropodes du sol. Paris: CNRS.

    Google Scholar 

  • Van Straalen, N. M., Donker, M. H., Vijver, M. G., & VanGestel, C. A. M. (2005). Bioavailability of contaminants estimated from uptake rates into soil invertebrates. Environmental Pollution, 136, 409–417.

    Article  Google Scholar 

  • Wardle, D. A. (2002). Communities and Ecosystems: Linking the aboveground and belowground components. Princeton: Princeton University Press.

    Google Scholar 

  • Weidemann, G. (1985). Rekultivierung als ökologisches Problem: 1. Konzept und Probeflächen. Verhandlungen der Gesellschaft für Ökologie, 13, 751–758.

    Google Scholar 

  • Weidemann, G., & Koehler, H. (2004). Sukzession. In O. Fränzle, F. Müller, & W. Schröder (Eds.), Handbuch der Umweltwissenschaften, 12. ergänzte Lieferung 6/04 (pp. 3–49). Landsberg: EoMed.

    Google Scholar 

  • Weidemann, G., Koehler, H., & Schriefer, T. (1982). Recultivation: A problem of stabilization during ecosystem development. In R. Bornkamm, J. A. Lee, & M. R. D. Seaward (Eds.), Urban ecology (pp. 305–313). Oxford: Blackwell.

    Google Scholar 

  • Wiwatwitaya, D., & Takeda, H. (2004). Seasonal changes in soil arthropod abundance in the dry evergreen forest of north-east Thailand, with special reference to collembolan communities. Ecological Research, 20, 59–70.

    Article  Google Scholar 

  • Wolters, V. (1998). Long-term dynamics of collembolan community. Applied Soil Ecology, 9, 221–227.

    Article  Google Scholar 

  • Yang, K., & Shahabi, C. (2005). On the stationarity of multivariate time series for correlation-based data analysis. Technical report, University of Southern California.

    Google Scholar 

Download references

Acknowldgments

Siedenburg Study: The first author is greatly indebted to Prof. G. Weidemann, the initiator and fervent advocate of long-term ecosystem-oriented research and to Dr. J. Müller, long-term vegetation researcher and friend. Many dedicated students contributed to our work and the technicians Ute Uebers and Annemarie Kissling strongly supported our investigations. The University of Bremen and the German Ministry of Education and Research (BMBF) have supported the studies temporarily. The evaluation of 20 years of data was supported within the BIOLOG framework (BMBF; 01LC0005 2000–2002).

The Mazsalaca study was supported by several successive grants from the Council of Science of Latvia (CSL). The CSL supported the development of the national long-term research network. We are grateful to the Environmental Office of US Embassy in Copenhagen and US National Science Foundation (NSF) for providing initial financial support for the implementation of the Latvia LTER in 2003–2004. We appreciate also further support coming from US LTER, NSF, European Environmental Agency as well as financial assistance from ALTER-net project making possible our participation in ILTER and European LTER meetings.

Many thanks to Dr. Klaus Birkhofer, University of Giessen, and an anonymous reviewer for their helpful comments on a previous manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartmut Koehler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Koehler, H., Melecis, V. (2010). Long-Term Observations of Soil Mesofauna. In: Müller, F., Baessler, C., Schubert, H., Klotz, S. (eds) Long-Term Ecological Research. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8782-9_15

Download citation

Publish with us

Policies and ethics