Advertisement

Study of the General Solution for the Two-Dimensional Electrical Impedance Equation

  • Marco Pedro Ramirez TachiquinEmail author
  • Andrei Gutierrez Solares
  • Victor Daniel Sanchez Nava
  • Octavio Rodriguez Torres
Chapter
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 60)

Abstract

We study a method for introducing the general solution of the two-dimensional Electrical Impedance Equation, based onto Quaternionic Analysis and Pseudoanalytic Function Theory, for the case when the electrical conductivity can be represented as a separable-variables function only once derivable. We also discuss the contribution of this results into the field of Electrical Impedance Tomography.

Keywords

Electrical impedance tomography quaternions pseudoanalytic 

Notes

Acknowledgments

The authors would like to acknowledge the support of CONACyT project 106722.

References

  1. 1.
    Astala, K., Päivärinta, L.: Calderon’s inverse conductivity problem in the plane. Ann. Math. 163, 265–299 (2006)zbMATHCrossRefGoogle Scholar
  2. 2.
    Bers, L.: Theory of pseudoanalytic functions. IMM (1953)Google Scholar
  3. 3.
    Calderon, A.P.: On an inverse boundary value problem. In: Meyer, W.H., Raupp, M.A. (eds.) Seminar on Numerical Analysis and its Applications to Continuum Physics, pp. 65–73. Rio de Janeiro (1980)Google Scholar
  4. 4.
    Castaneda, A., Kravchenko, V.V.: New applications of pseudoanalytic function theory to the dirac equation. Institute of Physics Publishing, J. Phys. A: Math. Gen. 38, 9207–9219 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Cheney, M., Isaacson, D., Newell, J.C.: Electrical impedance tomography. J. Soc. Ind. Appl. Math. Rev. 41(1), 85–101 (1999)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Demidenko, E.: Separable laplace equation, magic toeplitz matrix and generalized ohm’s law. Appl. Math. Comput. 181, 1313–1327 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Gurlebeck, K., Sprossig, W.: Quaternionic analysis and elliptic boundary value problems. Akademie-Verlag, Berlin (1989)Google Scholar
  8. 8.
    Kim, J., Webster, G., Tomkins, W.J.: Electrical impedance imaging of the thorax. Microwave Power 18, 245–257 (1983)Google Scholar
  9. 9.
    Kravchenko, V.V.: Applied quaternionic analysis, vol. 28. Researches and Exposition in Mathematics (2003)Google Scholar
  10. 10.
    Kravchenko, V.V.: Recent developments in applied pseudoanalytic function theory. Some Topics on Value Distribution and Differentiability in Complex and p-adic Analysis, Science Press, Beijing (2008)Google Scholar
  11. 11.
    Kravchenko, V.V.: Applied pseudoanalytic function theory. Birkhäuser Verlag AG, Series: Frontiers in Mathematics (2009)zbMATHCrossRefGoogle Scholar
  12. 12.
    Kravchenko, V.V., Oviedo, H.: On explicitly solvable vekua equations and explicit solution of the stationary schrödinger equation and of the equation divσ ∇ u = 0. Comp. Var. Ellip. Eq. 52(5), 353–366 (2007)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Tachiquin, M.P.R., Nava, V.D.S., Jaso, A.F., Torres, O.R.: On the advances of two and three-dimensional electrical impedance equation. 5th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), Mexico, IEEE Catalog Number: CFP08827-CDR, ISBN: 978-1-4244-2499-3, Library of Congress: 2008903800, 978-1-4244-2499-3/08 (2008)Google Scholar
  14. 14.
    Vekua, I.N.: Generalized Analytic Functions. Pergamon (1962)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Marco Pedro Ramirez Tachiquin
    • 1
    Email author
  • Andrei Gutierrez Solares
    • 1
  • Victor Daniel Sanchez Nava
    • 1
  • Octavio Rodriguez Torres
    • 1
  1. 1.MexicoMexico

Personalised recommendations