Skip to main content

Embedding Interconnection Networks in Crossed Cubes

  • Chapter
  • First Online:
Electronic Engineering and Computing Technology

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 60))

Abstract

The hypercube parallel architecture is one of the most popular interconnection networks due to many of its attractive properties and its suitability for general purpose parallel processing. An attractive version of the hypercube is the crossed cube. It preserves the important properties of the hypercube and most importantly reduces the diameter by a factor of 2. In this chapter, we show the ability of the crossed cube as a versatile architecture to simulate other interconnection networks efficiently. We present new schemes to embed complete binary trees, complete quad trees, and cycles into crossed cubes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abuelrub, E. Embeddings into crossed cubes. Proceedings of the World Congress on Engineering (WCE’2009),1, London (2009)

    Google Scholar 

  2. Abuelrub, E. The hamiltonicity of crossed cubes in the presence of faults. Eng. Lett.16(3), 453–459 (2008)

    Google Scholar 

  3. Barasch, L., Lakshmivarahan, S., Dhall, S.: Embedding arbitrary meshes and complete binary trees in generalized hypercubes. Proceedings of the 1st IEEE Symposium on Parallel and Distributed Processing, pp. 202–209, 1989

    Google Scholar 

  4. Chang, C., Sung, T., Hsu, L.: Edge congestion and topological properties of crossed cubes. IEEE Trans. Parall. Distrib. Syst.11(1), 64–80 (2006)

    Article  Google Scholar 

  5. Dingle, A., Sudborough, I.: Simulating binary trees and x-trees on pyramid networks. Proceedings of the 1st IEEE Symposium on Parallel and Distributed Processing, pp. 210–219 (1989)

    Google Scholar 

  6. Efe, K.: The crossed cube architecture for parallel computation. IEEE Trans. Parall. Distrib. Syst.3(5), 513–524 (1992)

    Article  Google Scholar 

  7. El-Amaway, A., Latifi, S.: Properties and performance of folded hypercubes. IEEE Trans. Parall. Distrib. Syst.2(1), 31–42 (1991)

    Article  Google Scholar 

  8. Fan, J., Lin, X., Jia, X.: Optimal path embedding in crossed cubes. IEEE Trans. Parall. Distrib. Syst.16(12), 1190–1200 (2005)

    Article  Google Scholar 

  9. Fu, J., Chen, G.: Hamiltonicity of the hierarchical cubic network. Theory Comput. Syst.35, 59–79 (2008)

    MathSciNet  Google Scholar 

  10. Keh, H., Lin, J.: On fault-tolerance embedding of hamiltonian cycles, linear arrays, and rings in a flexible hypercube. Parall. Comput.26(6), 769–781 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Latifi, S., Zheng, S.: Optimal simulation of linear array and ring architectures on multiply-twisted hypercube. In: Proceedings of the 11th International IEEE Conference on Computers and Communications, 1992

    Google Scholar 

  12. Lee, S., Ho, H.: A 1.5 approximation algorithm for embedding hyperedges in a cycle. IEEE Trans. Parall. Distrib. Syst.16(6), 481–487 (June 2005)

    Article  Google Scholar 

  13. Leighton, T.: Introduction to Parallel Algorithms and Architecture: Arrays, Trees, Hypercubes. Morgan Kaufmann, San Mateo, CA (1992)

    MATH  Google Scholar 

  14. Lin, J.: Embedding hamiltonian cycles, linear arrays, and rings in a faulty supercube. Int. J. High Speed Comput.11(3), 189–201 (2000)

    Article  MATH  Google Scholar 

  15. Ma, M., Xu, J.: Panconnectivity of locally twisted cubes. Appl. Math. Lett.17(7), 674–677 (2006)

    MathSciNet  Google Scholar 

  16. Markas, T., Reif, J.: Quad tree structures for image compression applications. Inform. Process. Lett.28(6), 707–722 (1992)

    Google Scholar 

  17. Preparata, F., Vuillemin, J.: The cube-connected cycles: a versatile network for parallel computation. Commun. ACM.24(5), 3000–3309 (1981)

    Article  MathSciNet  Google Scholar 

  18. Topi, L., Parisi, R., Uncini, A.: Spline recurrent neural network for quad-tree video coding. Proceedings of WIRN’2002, pp. 90–98 (2002)

    Google Scholar 

  19. Saad, Y., Schultz, M.: Topological properties of the hypercube. IEEE Trans. Comput.37(7), 867–872 (July 1988)

    Article  Google Scholar 

  20. Youyao, L.: A hypercube-based scalable interconnection network for massively parallel computing. J. Comput.3(10) (October 2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emad Abuelrub .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Abuelrub, E. (2010). Embedding Interconnection Networks in Crossed Cubes. In: Ao, SI., Gelman, L. (eds) Electronic Engineering and Computing Technology. Lecture Notes in Electrical Engineering, vol 60. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8776-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-8776-8_13

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8775-1

  • Online ISBN: 978-90-481-8776-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics