OFDMA WiMAX Physical Layer

  • Ramjee Prasad
  • Fernando J. Velez


IEEE 802.16 physical (PHY) layer is characterized by Orthogonal Frequency Division Multiplexing (OFDM), Time Division Duplexing, Frequency division Duplexing, Quadrature Amplitude Modulation and Adaptive Antenna Systems. After discussing the basics of OFDM and Orthogonal Frequency division Multiple Access (OFDMA), scalable OFDMA is presented and supported frequency bands, channel bandwidth and the different IEEE 802.16 PHY are discussed. The similarities and differences between wireless MAN-SC, wireless MAN-OFDM and wireless MAN-OFDMA PHY are finally highlighted.


Orthogonal Frequency Division Multiplex Medium Access Control Orthogonal Frequency Division Multiplex System Orthogonal Frequency Division Multiple Access Cyclic Prefix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R.V. Nee, R. Prasad, OFDM for Wireless Multimedia Communications (Artech House, Boston, MA, 2000)Google Scholar
  2. 2.
    M.I. Rahman, S.S. Das, F.H.P. Fitzek, OFDM Based WLAN Systems (Aalborg University, Denmark, Jan 2004). Technical Report R- 4-1002, ISSN 0908-1224, ISBN 87-90834-43-7Google Scholar
  3. 3.
    R.W. Chang, Synthesis of band-limited orthogonal signals for multichannel data transmission. Bell Syst. Tech. J. (Dec 1966)Google Scholar
  4. 4.
    J.L. Holsinger, Digital communication over fixed time continuous channels with memory, with special application to telephone channels, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA, 1964Google Scholar
  5. 5.
    R.G. Gallager, Information Theory and Reliable Communications (Wiley, New York, 1968)Google Scholar
  6. 6.
    B.R. Saltzberg, Performance of an efficient parallel data transmission system. IEEE Trans. Commun. 15(6), 805–811 (1967)CrossRefGoogle Scholar
  7. 7.
    S.B. Weinstein, P.M. Ebert, Data transmission of frequency division multiplexing using the discrete frequency transform. IEEE Trans. Commun. COM-19(5), 623–634 (Oct 1971)Google Scholar
  8. 8.
    R. Peled, A. Ruiz, Frequency domain data transmission using reduced computational complexity algorithms, in Proceeding of the IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP ’80 (Denver, CO, USA, 1980), pp. 964–967Google Scholar
  9. 9.
    L.J. Cimini, Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing. IEEE Trans. Commun. 33(7), 529–540 (July 1985)CrossRefGoogle Scholar
  10. 10.
    S.S. Das, Techniques to enhance spectral efficiency of OFDM Systems, Ph.D. thesis, Aalborg University, Denmark, 2007Google Scholar
  11. 11.
    M.A. Hasan, Performance Evaluation of WiMAX/IEEE 802.16 OFDM Physical Layer, Master’s thesis presentation, Helsinki University, Finland, 2007Google Scholar
  12. 12.
    E.P. Lawrey, Adaptive Techniques for Multiuser OFDM, Ph.D. dissertation, James Cook University, Australia, Dec 2001Google Scholar
  13. 13.
    C.R. Nassar et al., Multi-carrier Technologies for Wireless Communication (Kluwer, Norwell, MA, 2002)Google Scholar
  14. 14.
    M.I. Rahman, S.S. Das, F.H.P. Fitzek, OFDM Based WLAN Systems (Aalborg University, Denmark, 2005). Technical Report R-04-1002; v1.2, 2005Google Scholar
  15. 15.
    H. Rohling et al., Broad-band OFDM Radio transmission for multimedia applications. Proc. IEEE 87(10), 1778–1789 (Oct 1999)CrossRefGoogle Scholar
  16. 16.
    J. Geier, Wireless LANs, Implementing High Performance IEEE 802.11 Networks, 2nd ed. (Sams Publishing, Indianapolis, IN, July 2001)Google Scholar
  17. 17.
    D. Matic, OFDM Synchronization and Wideband Power Measurements at 60 GHz for Future Wireless Broadband Multimedia Communications, Ph.D. dissertation, Aalborg University, Denmark, Sept 2001Google Scholar
  18. 18.
    U.S. Jha, Low Complexity Resource Efficient OFDM Based Transceiver Design, Ph.D. dissertation, Aalborg University, Denmark, Sept 2002Google Scholar
  19. 19.
    IEEE 802.16-2004, IEEE Standard for Local and metropolitan area networks – Part 16: Air Interface for Fixed Broadband Wireless Access Systems, June 24, 2004Google Scholar
  20. 20.
    J.H. Scott, The How and Why of COFDM. BBC Research and Development, EBU Technical Review, Winter 1999Google Scholar
  21. 21.
    H. Sari et al., Transmission techniques for digital terrestrial TV broadcasting. IEEE Commun. Mag. 33(2), 100–109 (Feb 1995)CrossRefGoogle Scholar
  22. 22.
    H. Rohling, T. May, Comparison of PSK and DPSK Modulation in a Coded OFDM System, in Proceedings of IEEE VTC, Phoenix, Arizona, USA, 1997, pp. 5–7Google Scholar
  23. 23.
    IEEE P802.16e/D9 Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems: Amendment for Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands, IEEE, New York, June 2005Google Scholar
  24. 24.
    IEEE P802.16-2004/Cor1/D3 Corrigendum to IEEE Standard for Local and Metropolitan Area Networks–Part 16: Air Interface for Fixed Broadband Wireless Access Systems, IEEE, New York, 2005Google Scholar
  25. 25.
    Channel Models for Fixed Wireless Applications, IEEE 802.16 Broadband Wireless Access Working Group,, IEEE, New York, 2003
  26. 26.
    D.C. Cox, 910 MHz Urban mobile radio propagation: multipath characteristics in New York City. IEEE Trans. Commun. com-21(11) (Nov 1973)Google Scholar
  27. 27.
    D.H. Morais, Fixed Broadband Wireless Communications: Principles and Practical Applications, 1st ed. (Prentice Hall, Upper Saddle River, NJ, Jan 2004)Google Scholar
  28. 28.
    H. Yaghoobi, Scalable OFDMA Physical layer in IEEE 802.16 wireless MAN. Intel Technol. J. 8(3) (2004)Google Scholar
  29. 29.
    C. Eklund, R.B. Marks, K.L. Stanwood, S. Wang, IEEE Standard 802.16: A Technical Overview of the WirelessMAN Air Interface for Broadband Wireless Access (June 2002)Google Scholar
  30. 30.
    IEEE Std 802.16e-2005 and IEEE Std 802.162004/Cor 12005 (Amendment and Corrigendum to IEEE Std 802.16-2004), IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands and Corrigendum 1 (Feb 2006)Google Scholar
  31. 31.
    H. Sari, G. Karam, Orthogonal frequency-division multiple access and its application to CATV networks. Eur. Trans. Telecommun. (ETT) 9(6), 507–516 (Nov–Dec 1998)CrossRefGoogle Scholar
  32. 32.
    A. Ghosh, D.R. Wolter, J.G. Andrews, R. Chen, Broadband wireless access with WiMax/802.16: current performance benchmarks and future potential. IEEE Commun. Mag. 43(2) (Feb 2005)Google Scholar
  33. 33.
  34. 34.
  35. 35.
    H. Yaghoobi, Scalable OFDMA Physical Layer in IEEE 802.16 WirelessMAN. Intel Communications Group, Intel Corporation, Santa Clara, CA, USA (August 2004)Google Scholar
  36. 36.
    A. Ghost, R. Muhamed, J.G. Andrews, Fundamentals of WiMAX: Understanding Broadband Wireless Networking (Prentice Hall, Upper Saddle River, NJ, 2007)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Center for TeleInFrastruktur (CTIF)Aalborg UniversityAalborg ØstDenmark

Personalised recommendations