Advertisement

Asteraceae, Chile’s Richest Family

  • Andrés Moreira-Muñoz
Chapter
Part of the Plant and Vegetation book series (PAVE, volume 5)

Abstract

Being the richest family worldwide, the Asteraceae is also the richest Chilean family at the genus and species level. According to the most up to date knowledge, it encompasses 123 genera and 838 native species, that pertain to 20 different tribes. The 123 genera have been classified in 7 floristic elements and 9 generalized tracks and the geographical evolution of the family is discussed. Analysis of endemism has been undertaken by means of the program NDM/VNDM, resulting in 6 areas of endemism, some of them overlapping in Central Chile. Finally, several aspects about the conservation of the Chilean Asteraceae are discussed, considering also the high degree of alien invasive taxa and the gaps in the distributional knowledge. An exercise towards bridging these gaps is undertaken by means of niche modeling of Mutisia species.

Keywords

Fossil Pollen Disjunct Distribution Generic Richness Endemic Genus Generalize Track 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Anderberg AA, Baldwin BG, Bayer RG, Breitwieser J, Jeffrey C, Dillon MO, Eldenäs P, Funk V et al. (2007) Compositae. In: Kubitzki K, (ed) Asterales. Kadereit JW, Jeffrey C (vol eds), The families and genera of vascular plants, vol 8. Springer, New York, NY, pp 61–621Google Scholar
  2. Bentham G (1873) Notes on the classification, history and geographic distribution of Compositae. J Linn Soc Bot 13:355–577Google Scholar
  3. Bonifacino JM (2008) Reinstatement of Ocyroe (Compositae: Astereae). Brittonia 60:205–212CrossRefGoogle Scholar
  4. Bonifacino JM (2009) Taxonomic revision of the Chiliotrichum group sensu stricto (Compositae: Astereae). Smithson Contrib Bot 92:1–115Google Scholar
  5. Bremer K (1993) Intercontinental relationships of African and South American Asteraceae: a cladistic biogeographic analysis. In: Goldblatt P, (ed) Biological relationships between Africa and South America. Yale University Press, New Haven, CT and London, pp 105–135Google Scholar
  6. Bremer K (1994) Asteraceae: cladistics and classification. Timber Press, Portland, ORGoogle Scholar
  7. Bremer K, Gustafsson MHG (1997) East Gondwana ancestry of the sunflower alliance of families. Proc Nat Acad Sci USA 94:9188–9190PubMedCrossRefGoogle Scholar
  8. Cabrera AL (1959) Revisión del género Dasyphyllum (Compositae). Rev Mus Plata (Ser. 2) 9: 21–100Google Scholar
  9. Cabrera AL (1965) Revisión del género Mutisia (Compositae). Opera Lilloana 13:1–227Google Scholar
  10. Cabrera AL (1975) Nota sobre cinco Compositae de la República Argentina. Bol Soc Arg Bot 16:255–260Google Scholar
  11. Cassini H (1819) Suit du sixiéme mémoire sur la familie des Synanthérées, contenat les caractères des tribus. J Phys Chem, Hist Nat Arts 88:189–204Google Scholar
  12. Castro S, Muñoz-Schick M (2006) Compuestas naturalizadas en Chile: Importancia de la flora exótica como agente del cambio biotic. Rev Chagual (Jard Bot Santiago) 4:29–38Google Scholar
  13. Chambers KL (1963) Amphitropical species pairs in Microseris and Agoseris (Compositae: Cichorieae). Q Rev Biol 38:124–140CrossRefGoogle Scholar
  14. Crawford PHC, Hoagland BW (2009) Can herbarium records be used to map alien species invasion and native species expansion over the past 100 years? J Biogeogr 36:651–661CrossRefGoogle Scholar
  15. Danton P, Perrier C (2005) Notes sur la disparition d’une espèce emblématique: Robinsonia berteroi (DC.) Sanders, Stuessy and Martic. (Asteraceae), dans l’île Robinson Crusoe, archipel Juan Fernández (Chili). J Bot Soc Bot France 31:3–8Google Scholar
  16. Danton P, Perrier C (2006) Nouveau catalogue de la flore vasculaire de l’archipel Juan Fernández (Chili). Acta Bot Gall 153:399–587Google Scholar
  17. DeVore ML, Stuessy TF (1995) The place and time of origin of the Asteraceae, with additional comments on the Calyceraceae and Goodeniaceae. In: Hind DJN, Jeffrey C, Pope GV, (eds) Advances in Compositae systematics, vol. 1. Royal Botanic Gardens, Kew, pp 23–40Google Scholar
  18. Ezcurra C (2002) Phylogeny, morphology, and biogeography of Chuquiraga, an Andean-Patagonian genus of Asteraceae-Barnadesioideae. Bot Rev 68:153–170CrossRefGoogle Scholar
  19. Faúndez L, Saldivia P (2008) Plazia cheiranthifolia, especie ‘extinta’, redescubierta en la precordillera de Ovalle, region de Coquimbo, Chile. Noticiario Mens Mus Nac Hist Nat 360:18–21Google Scholar
  20. Funk VA, Bayer RJ, Keeley S, Chan R, Watson L, Gemeinholzer B, Schilling E, Panero JL, Baldwin BG, Garcia-Jacas N, Susanna A, Jansen RK (2005) Everywhere but Antarctica: Using a supertree to understand the diversity and distribution of the Compositae. Biol Skr 55:343–374Google Scholar
  21. Funk VA, Susanna A, Stuessy TF, Bayer RJ, (eds) (2009) Systematics, evolution, and biogeography of Compositae. International Association for Plant Taxonomy, ViennaGoogle Scholar
  22. Gillespie TW, Foody GM, Rocchini D, Giorgi AP, Saatchi S (2008) Measuring and modelling biodiversity from space. Prog Phys Geogr 32:203–221CrossRefGoogle Scholar
  23. Goloboff P (2005) NDM/VNDM ver. 2.6. Programs for identification of areas of endemism. http://www.zmuc.dk/public/phylogeny/endemism
  24. Graham A (1996) A contribution to the geologic history of the Compositae. In: Hind DJN, Beentje HJ (eds) Compositae: Systematics. Proceedings of the international Compositae conference, Kew, 1994, vol 1: 123–140Google Scholar
  25. Grehan JR (2007). A brief look at Pacific biogeography: the trans-oceanic travels of Microseris (Angiosperms: Asteraceae). In: Ebach MC, Tangney RS, (eds) Biogeography in a changing world. Systematics association special volumes. CRC Press, Boca Raton, FL, pp 83–94Google Scholar
  26. Gruenstaeudl M, Urtubey E, Jansen RK, Samuel R, Barfuss MHJ, Stuessy TF (2009) Phylogeny of Barnadesioideae (Asteraceae) inferred from DNA sequence data and morphology. Mol Phyl Evol 51:572–587CrossRefGoogle Scholar
  27. Guisan A, Thuiller W (2005) Predicting species distributions: offering more than simple habitat models. Ecol Lett 8:993–1009CrossRefGoogle Scholar
  28. Heads M (1999) Vicariance biogeography and terrane tectonics in the South Pacific: analysis of the genus Abrotanella (Compositae). Biol J Linn Soc 67:391–432Google Scholar
  29. Heads M (2009) Inferring biogeographic history from molecular phylogenies. Biol J Linn Soc 98:757–774CrossRefGoogle Scholar
  30. Hendry GAF (1996) Fructan and the ecology and evolution of the Compositae. In: Caligari PDS, Hind DJN (eds) Compositae: biology and utilization. Proceedings of the international Compositae conference, Kew Royal Botanic Gardens, 1994, vol 2, pp 121–128Google Scholar
  31. Hershkovitz MA, Arroyo MTK, Bell C, Hinojosa LF (2006) Phylogeny of Chaetanthera (Asteraceae: Mutisieae) reveals both ancient and recent origins of the high elevation lineages. Mol Phyl Evol 41:594–605CrossRefGoogle Scholar
  32. IUCN (2001) The IUCN List of Threatened Species. Categories and Criteria (version 3.1). http://www.iucn.org/themes/ssc/redlists/RLcats2001booklet.html
  33. Jansen RK, Palmer JD (1987) A chloroplast DNA inversion marks an ancient evolutionary split in the sunflower family, Asteraceae. Proc Nat Acad Sci USA 84:5818–5822PubMedCrossRefGoogle Scholar
  34. Katinas L, Crisci JV (2000) Cladistic and biogeographic analyses of the genera Moscharia and Polyachyrus (Asteraceae, Mutisieae). Syst Bot 25:33–46CrossRefGoogle Scholar
  35. Katinas L, Crisci JV, Tellería MC, Barreda V, Palazzesi L (2007) Early history of Asteraceae in Patagonia: evidence from fossil pollen grains. NZ J Bot 45:605–610CrossRefGoogle Scholar
  36. Kosak KH, Graham CH, Wiens JJ (2008) Integrating GIS-based environmental data into evolutionary biology. Trends Ecol Evol 23:141–148Google Scholar
  37. Lee J, Baldwin BG, Gottlieb LD (2003) Phylogenetic relationships among the primarily North American genera of Cichorieae (Compositae) based on analysis of 18S–26S nuclear rDNA ITS and ETS sequences. Syst Bot 28:616–626Google Scholar
  38. Lohwasser U, Granda A, Blattner FR (2004) Phylogenetic analysis of Microseris (Asteraceae) including a newly discovered Andean population from Peru. Syst Bot 29:774–780CrossRefGoogle Scholar
  39. Luebert F, Wen J, Dillon MO (2009) Systematic placement and biogeographical relationships of the monotypic genera Gypothamnium and Oxyphyllum (Asteraceae: Mutisioideae) from the Atacama Desert. Bot J Linn Soc 159:32–51CrossRefGoogle Scholar
  40. McEvoy PB, Cox CS (1987) Wind dispersal distances in dimorphic achenes of ragwort, Senecio jacobaea. Ecology 68:2006–2015CrossRefGoogle Scholar
  41. Moreira-Muñoz A (2006) Posición filogenética y distribución de los generous de Compuestas chilenas, con algunas notas biogeográficas. Rev Chagual (Jard Bot Santiago) 4:12–28Google Scholar
  42. Moreira-Muñoz A, Muñoz-Schick M (2007) Classification, diversity, and distribution of Chilean Asteraceae: implications for biogeography and conservation. Divers Distrib 13:818–828CrossRefGoogle Scholar
  43. Moreira-Muñoz A, Morales V, Pliscoff P (2009) Aplicación del programa ‘Maxent’ para modelar la distribución geográfica de las especies del género Mutisia (Asteraceae). XXX Congreso Nacional de Geografía Talca, Chile, 14 de octubre de 2009Google Scholar
  44. Muellner AN, Tremetsberger K, Stuessy TF, Baeza CM (2005) Pleistocene refugia and recolonization routes in the southern Andes: insights from Hypochaeris palustris (Asteraceae, Lactuceae). Mol Ecol 14:203–212PubMedCrossRefGoogle Scholar
  45. Muñoz Pizarro C (1966) Sinopsis de la Flora Chilena, 2nd edn. Ediciones Universidad de Chile, SantiagoGoogle Scholar
  46. Nijman V, Vonk R (2008) Blurring the picture: introductions, invasions, extinctions – biogeography in a global world. Contrib Zool 77:67–70Google Scholar
  47. Ortiz MA, Tremetsberger K, Terrab A, Stuessy TF, Garcia-Castano JL, Urtubey E, Baeza CM, Ruas CF, Gibbs PE, Talavera S (2008) Phylogeography of the invasive weed Hypochaeris radicata (Asteraceae): from Moroccan origin to worldwide introduced populations. Mol Ecol 17:3654–3667PubMedCrossRefGoogle Scholar
  48. Palazzesi L, Barreda V, Tellería MC (2009) Fossil pollen grains of Asteraceae from the Miocene of Patagonia: Barnadesioideae affinity. Rev Palaeobot Palynol 155:83–88CrossRefGoogle Scholar
  49. Palazzesi L, Barreda V, Tellería MC (2010) First fossil record of Calyceraceae (Asterales): Pollen evidence from southern South America. Rev Palaeobot Palynol 158:236–239CrossRefGoogle Scholar
  50. Pauchard A (2007) Invasions as spatially explicit processes: contributions to ecology (Letter to the editor). Front Ecol Environ 5:123–124Google Scholar
  51. Pauchard A, Kueffer C, Dietz H, Daehler CC, Alexander J, Edwards PJ, Arévalo JR, Cavieres L et al. (2009) Ain’t no mountain high enough: plant invasions reaching high elevations. Front Ecol Environ 7:479–486CrossRefGoogle Scholar
  52. Reiche C (1905) La distribución geográfica de las Compuestas de la flora de Chile. An Mus Nac Chile Secc Bot 17:1–45Google Scholar
  53. Rovito SM, Arroyo MTK, Pliscoff P (2004) Distributional modelling and parsimony analysis of endemicity of Senecio in the Mediterranean-type climate area of Central Chile. J Biogeogr 31:1623–1636CrossRefGoogle Scholar
  54. Sanders RW, Stuessy TF, Marticorena C, Silva M (1987) Phytogeography and evolution of Dendroseris and Robinsonia, tree-Compositae of the Juan Fernández Islands. Opera Bot 92:195–215Google Scholar
  55. Schram FR (2008) Does biogeography have a future in a globalized world with globalized faunas? Contrib Zool 77:127–133Google Scholar
  56. Scott L, Cadman A, Mcmillan I (2006) Early history of Cainozoic Asteraceae along the Southern African west coast. Rev Palaeobot Palynol 142:47–52CrossRefGoogle Scholar
  57. Sheldon JC, Burrows FM (1973) The dispersal effectiveness of the achene-pappus units of selected Compositae in steady winds with convection. New Phytol 72:665–675CrossRefGoogle Scholar
  58. Simpson BB (1973) Contrasting modes of evolution in two groups of Perezia (Mutisieae; Compositae) of southern South America. Taxon 22:525–536CrossRefGoogle Scholar
  59. Small J (1919) The origin and development of the Compositae. New Phytol 18:201–234CrossRefGoogle Scholar
  60. Stevens PF (2001 onwards) Angiosperm Phylogeny Website. http://www.mobot.org/MOBOT/research/APweb/
  61. Stuessy TF, Sang T, DeVore ML (1996) Phylogeny and biogeography of the subfamily Barnadesioideae with implications for early evolution of the Compositae. In: Hind DJN, Beentje HJ (eds) Compositae: Systematics. Proceedings of the international Compositae conference, Royal Botanic Gardens, Kew, 1994, vol. 1, pp 463–490Google Scholar
  62. Swenson U, Bremer K (1997) Pacific biogeography of the Asteraceae genus Abrotanella (Senecioneae, Blennospermatinae). Syst Bot 22:493–508CrossRefGoogle Scholar
  63. Teillier S, Marticorena A (2006) El género Senecio (Asteraceae): el más diverso de Chile. Rev Chagual (Jard Bot Santiago) 4:39–48Google Scholar
  64. Tremetsberger K, Weiss-Schneeweiss H, Stuessy TF, Samuel R, Kadlec G, Ortiz MA, Talavera S (2005) Nuclear ribosomal DNA and karyotypes indicate a NW African origin of South American Hypochaeris (Asteraceae, Cichorieae). Mol Phylogenet Evol 35:102–116PubMedCrossRefGoogle Scholar
  65. Turner BL (1977) Fossil history and geography. In: Heywood VH, Harborne JB, Turner BL, (eds) The biology and chemistry of the Compositae, vol. 1. London, Academic Press, pp 21–39Google Scholar
  66. Vijverberg K, Mes THM, Bachmann K (1999) Chloroplast DNA evidence for the evolution of Microseris (Asteraceae) in Australia and New Zealand after long-distance dispersal from western North America. Am J Bot 86:1448–1463PubMedCrossRefGoogle Scholar
  67. Wagstaff SJ, Breitwieser I, Swenson U (2006) Origin and relationships of the austral genus Abrotanella (Asteraceae) inferred from DNA sequences. Taxon 55:95–106CrossRefGoogle Scholar
  68. Willis JC (1922) Age and area: a study in geographical distribution and origin of species. Cambridge University Press, CambridgeGoogle Scholar
  69. Zavada M, de Villiers S (2000) Pollen of the Asteraceae from the Paleocene-Eocene of South Africa. Grana 39:39–45CrossRefGoogle Scholar
  70. Zizka G, Schmidt M, Schulte K, Novoa P, Pinto R, König K (2009) Chilean Bromeliaceae: diversity, distribution and evaluation of conservation status. Biodivers Conserv 18:2449–2471CrossRefGoogle Scholar
  71. Zuloaga FO, Morrone O, Belgrano MJ, (eds) (2008) Catálogo de las Plantas Vasculares del Cono Sur: Argentina, Sur de Brasil, Chile, Paraguay y Uruguay. Monographs in systematic botany, vol 107. Missouri Botanical Garden, St. Paul, MO, 1715–1830Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Pontificia Universidad Católica de ChileInstituto de GeografiaSantiagoChile

Personalised recommendations