Advertisement

Cactaceae, a Weird Family and Postmodern Evolution

  • Andrés Moreira-Muñoz
Chapter
Part of the Plant and Vegetation book series (PAVE, volume 5)

Abstract

One of the most charismatic American plant families, the Cactaceae, is well represented in Chile. Biogeographic analysis of the Chilean representatives is rarely undertaken, mainly due to the complex taxonomy of the group. Taking account of the most recent taxonomic treatments and distributional knowledge, an attempt is made here to develop a biogeographic regionalization by means of parsimony analysis of endemism (PAE) and the program NDM/VNDM. The first method yields three areas of endemism in northern Chile bordering the Atacama Desert to the North and to the South, and the second method yields one area which includes North-Central Chile. Advantages and restrictions of the methods are discussed. Finally, the evolution of the family is discussed in relation to the rise of the Atacama Desert and the systematic interpretation of the group

Keywords

Endemic Species Pacific Decadal Oscillation Middle Miocene Endemic Genus Atmospheric Heat Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alpers C, Brimhall GH (1988) Middle Miocene climatic change in the Atacama Desert, northern Chile: evidence from supergene mineralization at La Escondida. Geol Soc Am 100:1640–1656CrossRefGoogle Scholar
  2. Anderson EF (2001) The cactus family. Timber Press, Portland, ORGoogle Scholar
  3. Applequist WL, Wallace RS (2001) Phylogeny of the portulacaceous cohort based on ndhF sequence data. Syst Bot 26:406–419Google Scholar
  4. Arntz WE, Fahrbach E (1996) El Niño. Experimento climático de la naturaleza. Causas físicas y efectos biológicos. Traducción de C Wosnitza-Mendo y J Mendo. Fondo de Cultura Económica, MéxicoGoogle Scholar
  5. Backeberg C (1942) Cactaceae; Jahrbücher der DKG., Teil 2, Juni 1942: 55, Cactaceae Lindley; Systematische Übersicht (Neubearbeitung) mit BeschreibungsschlüsselGoogle Scholar
  6. Barreda VD, Anzótegui LA, Prieto AR, Aceñolaza PG et al. (2007) Diversificación y cambios de las angiospermas durante el Neógeno en Argentina. In: Archangelsky S, Sánchez T, Tonni EP (eds) Ameghiniana 50° aniversario, Publicación Especial 11: 173–191Google Scholar
  7. Barthlott W (1983) Biogeography and evolution in neo- and paleotropical Rhipsalinae (Cactaceae) – Sonderb. Naturwiss Verl Hamburg 7:241–248Google Scholar
  8. Barthlott W (2001) Preface. In: Anderson EF, (ed) The cactus family. Timber Press, Portland, ORGoogle Scholar
  9. Barthlott W, Hunt DR (1993) Cactaceae. In: Kubitzki K, Rohwer JG, Bittrich V, (eds) The families and genera of vascular plants, Vol 2. Flowering plants: Dicotyledons: Magnoliid, Hamamelid and Caryophyllid families. Springer, Berlin, Heidelberg, pp. 161–197Google Scholar
  10. Britton NL, Rose JN (1919–1923) The Cactaceae, 4 vols. Carnegie Inst., New York, NYGoogle Scholar
  11. Butterworth Ch, Edwards EJ (2008) Investigating Pereskia and the earliest divergences in Cactaceae. Haseltonia 14:46–53CrossRefGoogle Scholar
  12. Buxbaum F (1969) Die entwicklungswege der Kakteen in Sudamerika. In: Fittkau EJ, Illies J, Klinge H, et al. (eds) Biogeogaphy and ecology in South America. W. Junk, The Hague, pp 583–623Google Scholar
  13. Caviedes C (2001) El Niño in history: storming through the ages. University Press of Florida, Gainesville, FLGoogle Scholar
  14. Cereceda P, Larrain H, Osses P, Farías M, Egaña I (2008) The spatial and temporal variability of fog and its relation to fog oases in the Atacama Desert, Chile. Atmos Res 87:312–323CrossRefGoogle Scholar
  15. Christie DA, Lara A, Barichivich J, Villalba R, Morales MS, Cuq E (2009) El Niño-Southern Oscillation signal in the world’s highest-elevation tree-ring chronologies from the Altiplano, Central Andes. Palaeogeogr Palaeoclimatol Palaeoecol. doi:10.1016/j.palaeo.2007.11.013Google Scholar
  16. Clarke JDA (2006) Antiquity of aridity in the Chilean Atacama Desert. Geomorphology 73:101–114CrossRefGoogle Scholar
  17. Croizat L (1952) Manual of phytogeography, or an account of plant dispersal throughout the world. Junk, The HagueGoogle Scholar
  18. Dillon MO (1998) Chasing the 1997/1998 El Niño across Peru. Field Museums Memb Publ 69:2–4Google Scholar
  19. Dillon MO, Rundel PW (1990) The botanical response of the Atacama and Peruvian desert floras to the 1982–83 El Niño event. In: Glynn PW, (ed) Global ecological consequences of the 1982–83 El Niño-Southern Oscillation. Elsevier Oceanography Series 52. Elsevier, Amsterdam, pp 487–504CrossRefGoogle Scholar
  20. Dunai TJ, González López GA, Juez-Larré J (2005) Oligocene–Miocene age of aridity in the Atacama Desert revealed by exposure dating of erosion-sensitive landforms. Geology 33:321–324CrossRefGoogle Scholar
  21. Edwards EJ, Nyffeler R, Donoghue MJ (2005) Basal cactus phylogeny: implications of Pereskia (Cactaceae) paraphyly for the transition to the cactus life form. Am J Bot 92:1177–1188CrossRefGoogle Scholar
  22. Evenstar L, Hartley A, Rice C, Stuart F, Mather A, Chong G (2005) Miocene-Pliocene climate change in the Peru-Chile Desert. 6th international symposium on Andean geodynamics (ISAG 2005, Barcelona), extended abstracts, pp 258–260Google Scholar
  23. Ezcurra E, (ed) (2006) Global deserts outlook. United Nations Environment Programme (UNEP), NairobiGoogle Scholar
  24. Garreaud RD, Barichivich J, Christie DA, Maldonado A (2008) Interannual variability of the coastal fog at Fray Jorge relict forests in semiarid Chile. J Geophys Res 113:G04011. doi: 10.1029/2008JG000709CrossRefGoogle Scholar
  25. Gengler-Nowak KM (2002) Reconstruction of the biogeographical history of Malesherbiaceae. Bot Rev 68:171–188CrossRefGoogle Scholar
  26. Gibson AC, Nobel PS (1986) The cactus primer. Harvard University Press, Cambridge, MAGoogle Scholar
  27. Goloboff P (2005) NDM/VNDM ver. 2.6. Programs for identification of areas of endemism. http://www.zmuc.dk/public/phylogeny/endemism
  28. Gorelick R (2008) Early cactus evolution. Haseltonia 14:3–5CrossRefGoogle Scholar
  29. Griffith MP (2004a) What did the first cactus look like? An attempt to reconcile the morphological and molecular evidence. Taxon 53:493–499CrossRefGoogle Scholar
  30. Griffith MP (2004b) Early cactus evolution: the postmodern view. Haseltonia 10:3–11Google Scholar
  31. Griffith MP (2008) Pereskia, Portulacaceae, photosynthesis, and phylogenies: implications for early Cactaceae. Haseltonia 14:37–45CrossRefGoogle Scholar
  32. Griffith MP, Porter JM (2009) Phylogeny of Opuntioideae (Cactaceae). Int J Plant Sci 170:107–116CrossRefGoogle Scholar
  33. Hartley AJ, Chong G (2002) A late Pliocene age for the Atacama Desert: implications for the desertification of western South America. Geology 30:43–46CrossRefGoogle Scholar
  34. Hartley AJ, Chong G, Houston J, Mather AE (2005) 150 million years of climatic stability: evidence from the Atacama Desert, northern Chile. J Geol Soc 162:421–424CrossRefGoogle Scholar
  35. Hay WW, Soeding E, DeConto RM, Wold CN (2002) The Late Cenozoic uplift – climate change paradox. Int J Earth Sci 91:746–774CrossRefGoogle Scholar
  36. Herbst R, Troncoso A (1996) La tafoflora de Juan de Morales del Jurásico Medio (Formación Chacarilla), Región de Tarapacá, Chile. Rev Geol Chile 23:3–15Google Scholar
  37. Hershkovitz MA, Zimmer EA (1997) On the evolutionary origins of the cacti. Taxon 46:217–232CrossRefGoogle Scholar
  38. Hoffmann AE, Walter HE (2004) Cactáceas en la flora silvestre de Chile, 2nd edn. Ed. Fundación Claudio Gay, SantiagoGoogle Scholar
  39. Holmgren M, Stapp P, Dickman CR, Gracia C, Graham S, Gutiérrez JR, Hice C, Jaksic F, Kelt DA et al. (2006) A synthesis of ENSO effects on drylands in Australia, North America and South America. Adv Geosci 6:69–72CrossRefGoogle Scholar
  40. Kiesling R (2002) Pterocactus (Cactaceae), new record for the Chilean flora. Gayana Bot 59:61–63CrossRefGoogle Scholar
  41. Kraus R (1995) The environmental conditions of Cactaceae in Chile. Haseltonia 3:110–129Google Scholar
  42. Latorre C, Betancourt JL, Rylander K, Quade J (2002) Vegetation invasions into absolute desert; a 45 000 yr rodent midden record from the Calama–Salar de Atacama basins, northern Chile (lat 22°–24°S). Geol Soc Am Bull 114:349–366CrossRefGoogle Scholar
  43. Latorre C, Betancourt JL, Rylander K, Quade J, Matthei O (2003) A vegetational history from the arid prepuna of northern Chile (22°–23°S) over the last 13,500 years. Paleogeogr Paleoclimatol Paleoecol 194:223–236CrossRefGoogle Scholar
  44. Lembcke H, Weisser PJ (1979) The distribution of the genera of Chilean Cactaceae. Aloe 17:9–26Google Scholar
  45. Leuenberger BE (1986) Pereskia (Cactaceae). Mem NY Bot Gard 41:1–141Google Scholar
  46. Leuenberger BE (1997) Maihuenia—monograph of a Patagonian genus of Cactaceae. Bot Jahrb 119:1–92Google Scholar
  47. Leuenberger BE (2008) Pereskia, Maihuenia, and Blossfeldia—taxonomic history, updates, and notes. Haseltonia 14:54–93CrossRefGoogle Scholar
  48. Louchart A, Tourment N, Carrier J, Roux T, Mourer-Chauviré C (2008) Hummingbird with modern feathering: an exceptionally well-preserved Oligocene fossil from southern France. Naturwissenschaften 95:171–175CrossRefPubMedGoogle Scholar
  49. Luebert F, Wen J (2008) Phylogenetic analysis and evolutionary diversification of Heliotropium sect. Cochranea (Heliotropiaceae) in the Atacama Desert. Syst Bot 33:390–402CrossRefGoogle Scholar
  50. Maldonado A, Betancourt JL, Latorre C, Villagrán C (2005) Pollen analyses from a 50 000-yr rodent midden series in the southern Atacama Desert (25 degrees 30S). J Quat Sci 20:493–507CrossRefGoogle Scholar
  51. Marticorena C (1990) Contribución a la estadística de la flora vascular de Chile. Gayana Bot 47:85–113Google Scholar
  52. Mauseth JD (1990) Continental drift, climate and the evolution of cacti. Cact Succ J 62:302–308Google Scholar
  53. Mauseth JD, Kiesling R, Ostolaza C (2002) A Cactus Odyssey: journal in the wilds of Bolivia, Peru, and Argentina. Timber Press, OregonGoogle Scholar
  54. Mautino LR (2002) Cactaceae en la Formación San José (Mioceno Medio), Tucumán, Argentina. 8º Congreso Argentino de Paleontologia y Bioestratigrafía, Resúmenes: p. 26Google Scholar
  55. Maxwell R (1998) The Rhipsalis Riddle – or the day the cacti came down from the trees. http://rhipsalis.com/maxwell.htm (originally appeared in the New Zealand Cactus and Succulent Journal)
  56. Mayr G (2004) Old world fossil record of modern-type hummingbirds. Science 304:861–864CrossRefPubMedGoogle Scholar
  57. Muñoz-Schick M (1991) Flores del Norte Chico, 2nd edn. Dirección de Archivos, Bibliotecas y Museos, SantiagoGoogle Scholar
  58. Muñoz-Schick M, Pinto R, Mesa A, Moreira-Muñoz A (2001) Oasis de neblina en los cerros costeros del sur de Iquique, región de Tarapacá, Chile, durante el evento El Niño 1997–1998. Rev Chil Hist Nat 74:389–405CrossRefGoogle Scholar
  59. Nyffeler R (2002) Phylogenetic relationships in the cactus family (Cactaceae) based on evidence from trnK/matK and trnL-trnF sequences. Am J Bot 89:312–326CrossRefGoogle Scholar
  60. Nyffeler R, Eggli U, Ogburn M, Edwards EJ (2008) Variations on a theme: repeated evolution of succulent life forms in the Portulacineae (Caryophyllales). Haseltonia 14:26–36CrossRefGoogle Scholar
  61. Ochsenius C (1999) The neotropical aridity. CCOS PCSS Geowissenschaftliche Beiträge, Baden-WürttembergGoogle Scholar
  62. Ortlieb L (1994) Las mayores precipitaciones históricas en Chile Central y la cronología de eventos ENOS en los siglos XVI–XIX. Rev Chil Hist Nat 67:463–485Google Scholar
  63. Pinto R (2002) Lobivia ferox Britton et Rose (Cactaceae): new record for the Chilean flora. Gayana Bot 59:65–72Google Scholar
  64. Pinto R (2003) Maihueniopsis nigrispina (Cactaceae, Opuntioideae): nuevo registro para la flora chilena. Chloris Chilensis 6. http://www.chlorischile.cl
  65. Pinto R, Moscoso D (2004) Estudio poblacional de Echinopsis atacamensis (Cactaceae) en la Región de Tarapacá (I), norte de Chile. Chloris Chilensis 2. http://www.chlorischile.cl
  66. Pinto R, Kirberg A (2009) Cactus del Extremo Norte de Chile. AMF, SantiagoGoogle Scholar
  67. Pinto R, Luebert F (2009) Datos sobre la flora vascular del desierto costero de Arica y Tarapacá, Chile, y sus relaciones fitogeográficas con el Sur de Perú. Gayana Bot 66:28–49CrossRefGoogle Scholar
  68. Richter M (2001) Vegetationszonen der Erde. Klett-Perthes, Ulmer, Gotha and StuttgartGoogle Scholar
  69. Ritz CM, Martins L, Mecklenburg R, Goremykin V, Hellwig FH (2007) The molecular phylogeny of Rebutia (Cactaceae) and its allies demonstrates the influence of paleogeography on the evolution of South American mountain cacti. Am J Bot 94:1321–1332CrossRefGoogle Scholar
  70. Roig-Juñent S, Flores GE, Mattoni C (2003) Consideraciones biogeográficas de la Precordillera (Argentina), con base en artrópodos epígeos. In: Morrone JJ,, Llorente Bousquets J, (eds) Una Perspectiva Latinoamericana de la Biogeografía. Las Prensas de Ciencias, Facultad de Ciencias, UNAM, México, DF, pp 275–288Google Scholar
  71. Roig-Juñent S, Domínguez MC, Flores GE, Mattoni C (2006) Biogeographic history of South American arid lands: a view from its arthropods using TASS analysis. J Arid Environ 66:404–420CrossRefGoogle Scholar
  72. Schulz N (2009) Loma-Formationen der Küsten-Atacama/Nordchile unter besonderer Berücksichtigung rezenter Vegetations- und Klimaveränderungen. PhD thesis, Geographical Institute, Erlangen-Nürnberg UniversityGoogle Scholar
  73. Schumann K (1898) Gesamtbeschreibung der Kakteen. Neumann, NeudammGoogle Scholar
  74. Skottsberg C (1916) Botanische Ergebnisse der schwedischen Expedition nach Patagonien und dem Feuerlande 1907–1909. V. Die Vegetationsverhältnisse längs der Cordillera de los Andes südlich von 41 Grad südlicher Breite. K Sven Vetenskapsakademien Handl 56:1–366. Almqvist & Wiksell, StockholmGoogle Scholar
  75. Solbrig O (1976) The origin and floristic affinities of the South American temperate, desert and semidesert regions. In: Goodall W, (ed) Evolution of desert biota. University of Texas Press, Austin, TX, pp 7–49Google Scholar
  76. Stebbins GL (1952) Aridity as a stimulus to plant evolution. Am Nat 86:33–44CrossRefGoogle Scholar
  77. Wallace RS (1995) Molecular systematic study of the Cactaceae: using chloroplast DNA variation to elucidate cactus phylogeny. Bradleya 13:1–12Google Scholar
  78. Wallace RS, Gibson AC (2002) Evolution and systematics. In: Nobel PS, (ed) Cacti: biology and uses. University of California Press, Berkeley, CA, pp 1–21Google Scholar
  79. Zuloaga FO, Morrone O, Belgrano MJ, (eds) (2008) Catálogo de las Plantas Vasculares del Cono Sur: Argentina, Sur de Brasil, Chile, Paraguay y Uruguay. Monogr Syst Bot, 107: 1715–1830 Missouri Botanical GardenGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Pontificia Universidad Católica de ChileInstituto de GeografiaSantiagoChile

Personalised recommendations