All the Possible Worlds of Biogeography

Chapter
Part of the Plant and Vegetation book series (PAVE, volume 5)

Abstract

Today anyone intending to integrate the different views that shape modern biogeography must confront the differences inherent to the diverse approaches involved in the discipline. In spite of the attempts to integrate different approaches into one coherent program of synthetical biogeography, the biogeographic arena is getting more and more fragmented due to a plethora of methods, and the ultimate synthesis is getting more and more elusive. The so-called “crisis of biogeography” seems to be related to a more general crisis of reductionistic modern science in its failure to account for the real world problems, as challenged by scientists inspired by postmodern theory. To what extent biogeography assumes and reflects the conflicts, presumptions and challenges inherent to (post)modern science must be kept in mind while analysing the Chilean plant geography.

Keywords

Land Bridge Continental Drift Subantarctic Island Tectonic Reconstruction Biogeographic Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ali JR (2006) Biogeographical and geological evidence for a smaller, completely-enclosed Pacific Basin in the Late Cretaceous: a comment. J Biogeogr 33:1670–1674CrossRefGoogle Scholar
  2. Attwell CAM, Cotterill FPD (2000) Postmodernism and African conservation science. Biodivers Conserv 9:559–577CrossRefGoogle Scholar
  3. Barkera PF, Thomas E (2004) Origin, signature and palaeoclimatic influence of the Antarctic Circumpolar Current. Earth Sci Rev 66:143–162CrossRefGoogle Scholar
  4. Bortoft H (1996) The wholeness of nature: Goethe’s way of science. Floris Books, EdinburghGoogle Scholar
  5. Boyer SL, Giribet G (2009) Welcome back New Zealand: regional biogeography and Gondwanan origin of three endemic genera of mite harvestmen (Arachnida, Opiliones, Cyphophthalmi). J Biogeogr 36:1084–1099CrossRefGoogle Scholar
  6. Briggs JC (2004) The ultimate expanding earth hypothesis. J Biogeogr 31:855–857CrossRefGoogle Scholar
  7. Brockman J (1995) The third culture: beyond the scientific revolution. Simon and Schuster, New York, NYGoogle Scholar
  8. Carey SW (1988) Theories of the earth and the universe: a history of dogma in the earth science. Stanford University Press, Stanford, CAGoogle Scholar
  9. Cooper A, Cooper RA (1995) The Oligocene bottleneck and New Zealand biota: genetic record of a past environmental crisis. Proc R Soc Lond B 261:293–302CrossRefGoogle Scholar
  10. Cox CB (1990) New geological theories and old biogeographical problems. J Biogeogr 17: 117–130CrossRefGoogle Scholar
  11. Craw R (1988) Continuing the synthesis between panbiogeography, phylogenetic systematics and geology as illustrated by empirical studies on the biogeography of New Zealand and the Chatham Islands. Syst Zool 37:291–310CrossRefGoogle Scholar
  12. Crisci JV, Katinas L (2009) Darwin, historical biogeography, and the importance of overcoming binary opposites. J Biogeogr 36:1027–1032CrossRefGoogle Scholar
  13. Crisci JV, Cigliano MM, Morrone JJ, Roig-Juñent S (1991) Historical biogeography of southern South America. Syst Zool 40:152–171CrossRefGoogle Scholar
  14. Crisci JV, Katinas L, Posadas P (2003) Historical biogeography: an introduction. Harvard University Press, Cambridge, MAGoogle Scholar
  15. Crisci JV, Sala OE, Katinas L, Posadas P (2006) Bridging historical and ecological approaches in biogeography. Aust Syst Bot 19:1–10CrossRefGoogle Scholar
  16. Croizat L (1952) Manual of phytogeography, or an account of plant dispersal throughout the world. Junk, The HagueGoogle Scholar
  17. Croizat L (1958) Panbiogeography or an introductory synthesis of zoogeography, phytogeography, and geology; with notes on evolution, systematics, ecology, anthropology, etc. (3 vol.) Published by the author, Caracas, VenezuelaGoogle Scholar
  18. Davis CC, Bell CD, Mathews S, Donoghue MJ (2002) Laurasian migration explains Gondwanan disjunctions: evidence from Malpighiaceae. Proc Natl Acad Sci USA 99:6833–6837PubMedCrossRefGoogle Scholar
  19. Dawkins R (1998) Postmodernism disrobed. Nature 394:141–143CrossRefGoogle Scholar
  20. Dear M, Wassmansdorf G (1993) Postmodern consequences. Geogr Rev 83:321–325CrossRefGoogle Scholar
  21. Demeritt D (2009) Geography and the promise of integrative environmental research. Geoforum 40:127–129CrossRefGoogle Scholar
  22. Dickins JM, Choi DR, Yeates AT (1992) Past distribution of oceans and continents. In: Chatterjee S, Hotton N III, (eds) New concepts in global tectonics. Texas Tech. University Press, Lubbock, TX, pp 193–199Google Scholar
  23. Dobson JE (1992) Spatial logic in paleogeography and the explanation of continental drift. Ann Assoc Am Geogr 82:187–206CrossRefGoogle Scholar
  24. Donoghue MJ, Moore BR (2003) Toward an integrative historical biogeography. Integr Comp Biol 43:261–270CrossRefPubMedGoogle Scholar
  25. Doyle JA (2008) Integrating molecular phylogenetic and paleobotanical evidence on origin of the flower. Int J Plant Sci 169:816–843CrossRefGoogle Scholar
  26. Ebach MC (2005) Anschauung and the archetype: the role of Goethe’s delicate empiricism in comparative biology. Janus Head 8:254–270Google Scholar
  27. Ebach MC, Humphries CJ (2003) Ontology of biogeography. J Biogeogr 30:959–962CrossRefGoogle Scholar
  28. Ebach MC, Humphries CJ, Williams DM (2003) Phylogenetic biogeography deconstructed. J Biogeogr 30:1285–1296CrossRefGoogle Scholar
  29. Ebach MC, Tangney RS (2007) Biogeography in a changing world. Systematics Association Special Volumes. CRC Press, Boca Raton, FLGoogle Scholar
  30. Edgecombe GD, Giribet G (2008) A New Zealand species of the trans-Tasman centipede order Craterostigmomorpha (Arthropoda: Chilopoda) corroborated by molecular evidence. Invertebr Syst 22:1–15CrossRefGoogle Scholar
  31. Egner H (2006) Autopoiesis, form and observation – modern systems theory and its potential contribution to the integration of human and physical geography. Mitt der Österr Geogr Gesell 148:92–108Google Scholar
  32. Ette O (2007) Towards world science? Humboldtian science, world concepts, and TransArea studies. In: Rehrmann N, Ramírez Sáinz L, (eds) Dos culturas en diálogo. Historia cultural de la naturaleza, la técnica y las ciencias naturales en España y América Latina. Madrid – Frankfurt am Main, Iberoamericana - Vervuert, pp. 121–150Google Scholar
  33. Ezcurra C, Baccala N, Wardle P (2008) Floristic relationships among vegetation types of New Zealand and the southern Andes: Similarities and biogeographic implications. Ann Bot 101:1401–1412PubMedCrossRefGoogle Scholar
  34. Feild TS, Arens NC (2005) Form, function and environments of the early angiosperms: merging extant phylogeny and ecophysiology with fossils. New Phytol 166:383–408PubMedCrossRefGoogle Scholar
  35. Fernández-Armesto F (1997) Truth a history. Bantam Press, LondonGoogle Scholar
  36. Ferré F (1997) The postmodern world. In: Meffe GK, Carroll CR, (eds) Principles of conservation biology, 2nd edn. Sinauer Associates, Sunderland, MA, pp 532–53Google Scholar
  37. Frohlich MW (2006) Recommendations and goals for evo-devo research: scenarios, genetic constraint, and developmental homeostasis. Aliso 22:172–187Google Scholar
  38. García Azkonobieta T (2005) Evolución, desarrollo y (auto)organización. Un estudio sobre los principios filosóficos de la evo-devo. Tesis doctoral, Universidad del País VascoGoogle Scholar
  39. Gibbons M, Limoges C, Nowotny H, Schwartzman S, Scott P, Trow M (1994) The new production of knowledge: the dynamics of science and research in contemporary societies. Sage, LondonGoogle Scholar
  40. Gibbs G (2006) Ghosts of Gondwana: the history of life in New Zealand. Craig Potton Publishing, NelsonGoogle Scholar
  41. Goldberg J, Trewick SA, Paterson AM (2008) Evolution of New Zealand’s terrestrial fauna: a review of molecular evidence. Philos Trans R Soc B Biol Sci 363:3319–3334CrossRefGoogle Scholar
  42. Goodwin B (2007) Nature’s due: healing our fragmented culture. Floris Books, EdinburghGoogle Scholar
  43. Grande L (1994) Repeating patterns in nature, predictability, and “impact” in science. In: Grande L, Rieppel O, (eds) Interpreting the hierarchy of nature: from systematic patterns to evolutionary process theories. Academic Press, Inc, New York, NY, pp 61–84Google Scholar
  44. Greppi C (2008) A proposito di evoluzionismo e geografia. L’incontro mancato fra Humboldt e Darwin. Quad Stor 127:1–21Google Scholar
  45. Griffith MP (2004) Early cactus evolution: the postmodern view. Haseltonia 10:3–11Google Scholar
  46. Haigh MJ (1985) Geography and general system theory, philosophical homologies and current practice. Geoforum 16:191–203CrossRefGoogle Scholar
  47. Hall R (2002) Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. J Asian Earth Sci 20:353–431CrossRefGoogle Scholar
  48. Hartshorne R (1939) The classical period: Humboldt and Ritter. Ann Assoc Am Geogr 29:48–84CrossRefGoogle Scholar
  49. Hartshorne R (1960) Perspective on the nature of geography. John Murray, LondonGoogle Scholar
  50. Hay WW, De Conto RM, Wold CN, Wilson KM, Voigt S, Schulz M et al. (1999) Alternative global Cretaceous paleogeography. In: Barrera E, Johnson C (eds) Evolution of the Cretaceous Ocean-Climate System. GSA Special Paper 332:1–47Google Scholar
  51. Heads MJ (1990) Mesozoic tectonics and the deconstruction of biogeography: a new model of Australasian biology. J Biogeogr 17:223–225Google Scholar
  52. Heads M (1999) Vicariance biogeography and terrane tectonics in the South Pacific: analysis of the genus Abrotanella (Compositae). Biol J Linn Soc 67:391–432Google Scholar
  53. Heads M (2002) Birds of paradise, vicariance biogeography and terrane tectonics in New Guinea. J Biogeogr 29:261–283CrossRefGoogle Scholar
  54. Heads M (2005a) The history and philosophy of panbiogeography. In: Llorente Bousquets J, Morrone JJ, (eds) Regionalización biogeográfica en Iberoamérica y tópicos afines. Las Prensas de Ciencias, Facultad de Ciencias, UNAM, México DF, pp 67–123Google Scholar
  55. Heads M (2005b) Dating nodes on molecular phylogenies: a critique of molecular biogeography. Cladistics 21:62 –78CrossRefGoogle Scholar
  56. Heads M (2009) Globally basal centres of endemism: the Tasman-Coral Sea region (south-west Pacific), Latin America and Madagascar/South Africa. Biol J Linn Soc 96:222–245CrossRefGoogle Scholar
  57. Hennig W (1966) Phylogenetic systematics. University of Illinois Press, Chicago, ILGoogle Scholar
  58. Hettner A (1927) Die Geographie, ihre Geschichte, ihr Wesen und ihre Methoden. Ferdinand Hirt, BreslauGoogle Scholar
  59. Hilgenberg OC (1933) Vom wachsenden Erdball. Published by the author, BerlinGoogle Scholar
  60. Holdrege C (2005) Doing Goethean science. Janus Head 8:27–52Google Scholar
  61. Holt-Jensen A (1999) Geography history & concepts. A student’s Guide, 3rd edn. Sage, LondonGoogle Scholar
  62. Jones O (2008) Stepping from the wreckage: geography, pragmatism and anti-representational theory. Geoforum 39:1600–1612CrossRefGoogle Scholar
  63. Jones MEH, Tennyson AJD, Worthy JP, Evans SE, Worthy TH (2009) A sphenodontine (Rhynchocephalia) from the Miocene of New Zealand and palaeobiogeography of the tuatara (Sphenodon). Proc R Soc B 276:1385–1390PubMedCrossRefGoogle Scholar
  64. Jordan GJ, Bannister JM, Mildenhall DC, Zetter R, Lee DE (2010) Fossil Ericaceae from New Zealand: deconstructing the use of fossil evidence in historical biogeography. Am J Bot 97: 59–70CrossRefPubMedGoogle Scholar
  65. Kamp PJJ (1980) Pacifica and New Zealand: proposed eastern elements in Gondwanaland’s history. Nature 288:659–664CrossRefGoogle Scholar
  66. Katinas L, Morrone JJ, Crisci JV (1999) Track analysis reveals the composite nature of the Andean biota. Aust J Bot 47:111–130CrossRefGoogle Scholar
  67. Knapp M, Mudaliar R, Havell D, Wagstaff SJ, Lockhart PJ (2007) The drowning of New Zealand and the problem of Agathis. Syst Biol 56:862–870PubMedCrossRefGoogle Scholar
  68. Krause DW, O’Connor PM, Rogers KC, Sampson SD, Buckley GA, Rogers RR (2006) Late Cretaceous terrestrial vertebrates from Madagascar: implications for Latin American biogeography. Ann Mo Bot Gard 93:178–208CrossRefGoogle Scholar
  69. Larson RL, Pockalny RA, Viso RF, Erba E, Abrams LJ, Luyendyk BP, Stock JM, Clayton RW (2002) Mid-Cretaceous tectonic evolution of the Tongareva triple junction in the southwestern Pacific Basin. Geology 30:67–70CrossRefGoogle Scholar
  70. Lee DE, Bannister JM, Lindqvist JK (2007) Late Oligocene-Early Miocene leaf macrofossils confirm a long history of Agathis in New Zealand. N Z J Bot 45:565–578CrossRefGoogle Scholar
  71. Lindemann B (1927) Kettengebirge, kontinentale Zerspaltung und Erdexpansion. Gustav Fischer, JenaGoogle Scholar
  72. Linder HP, Crisp MD (1995) Nothofagus and Pacific biogeography. Cladistics 11:5–32CrossRefGoogle Scholar
  73. Lomolino MV, Heaney LR (2004) Reticulations and reintegration of modern biogeography. In: Lomolino MV, Heaney LR, (eds) Frontiers in biogeography: new directions in the geography of nature. Sinauer, Sunderland, MA, pp 1–3Google Scholar
  74. Marquet PA, Fernández M, Navarrete SA, Valdovinos C (2004) Diversity emerging: toward a deconstruction of biodiversity patterns. In: Lomolino MV, Heaney LR, (eds) Frontiers in biogeography: new directions in the geography of nature. Sinauer, Sunderland, MA, pp 191–209Google Scholar
  75. McCarthy D (2003) The trans-Pacific zipper effect: disjunct sister taxa and matching geological outlines that link the Pacific margins. J Biogeogr 30:1545–1561CrossRefGoogle Scholar
  76. McCarthy D (2005a) Biogeographical and geological evidence for a smaller, completely-enclosed Pacific Basin in the Late Cretaceous. J Biogeogr 32:2161–2177CrossRefGoogle Scholar
  77. McCarthy D (2005b) Biogeography and scientific revolutions. Systematist 25:3–12Google Scholar
  78. McCarthy D (2007) Are plate tectonic explanations for trans-pacific disjunctions plausible? Empirical tests of radical dispersalist theories. In: Ebach MC, Tangney RS, (eds) Biogeography in a changing world. Systematics Association special volumes. CRC Press, Boca Raton, FL, pp 171–192Google Scholar
  79. McDowall RM (2008) Process and pattern in the biogeography of New Zealand – a global microcosm? J Biogeogr 35:197–212CrossRefGoogle Scholar
  80. McGlone MS (2005) Goodbye Gondwana. J Biogeogr 32:739–740CrossRefGoogle Scholar
  81. McLoughlin S (2001) The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism. Aust J Bot 49:271–300CrossRefGoogle Scholar
  82. Michaux B, Leschen RAB (2005) East meets west: biogeology of the Campbell Plateau. Biol J Linn Soc 86:95–115CrossRefGoogle Scholar
  83. Miller JM (2009 onwards) Paleobotany of Angiosperm Origin. http://www.gigantopteroid.org/html/research.htm
  84. Milne RI (2006) Northern Hemisphere plant disjunctions: a window on tertiary land bridges and climate change? Ann Bot 98:465–472CrossRefGoogle Scholar
  85. Morley RJ (2001) Why are there so many primitive angiosperms in the rain forests of Asia-Australasia? In: Metcalfe I, Smith JMB, et al.(eds) Faunal and floral migrations and evolution in SE Asia-Australasia. Balkema Publishers, Tokyo, pp 185–199Google Scholar
  86. Morley RJ (2003) Interplate dispersal paths for megathermal angiosperms. Perspect Plant Ecol Evol Syst 6:5–20CrossRefGoogle Scholar
  87. Morrone JJ (2003) ¿Quién le teme al Darwinismo? Ciencia 54:78–88Google Scholar
  88. Morrone JJ (2007) Hacia una biogeografía evolutiva. Rev Chil Hist Nat 80:509–520CrossRefGoogle Scholar
  89. Morrone JJ (2009) Evolutionary biogeography: an integrative approach with case studies. Columbia University Press, New York, NYGoogle Scholar
  90. Morrone JJ, Crisci JV (1995) Historical biogeography: an introduction to methods. Annu Rev Ecol Syst 26:373–401CrossRefGoogle Scholar
  91. Myers N (1997) Exploring Goethean Science at Schumacher College. http://www.island.org/prescience/goethe.html
  92. Myers AA, Giller PS, (eds) (1988) Analytical biogeography: an integrated approach to the study of animal and plant distributions. Chapman and Hall, LondonGoogle Scholar
  93. Nelson G (1975) Biogeography, the vicariance paradigm, and continental drift. Syst Zool 24: 490–504CrossRefGoogle Scholar
  94. Nelson G, Ladiges PY (2001) Gondwana, vicariance biogeography and the New York School revisited. Aust J Bot 49:389–409CrossRefGoogle Scholar
  95. Nur A, Ben-Avraham Z (1977) Lost Pacifica continent. Nature 270:41–43CrossRefGoogle Scholar
  96. Nur A, Ben-Avraham Z (1981) The lost Pacifica continent: a mobilistic speculation. In: Nelson G, Rosen DE, (eds) Vicariance biogeography: a critique. Columbia University Press, New York, NY, pp 341–358Google Scholar
  97. Parenti LR, Ebach MC (2009) Comparative biogeography: discovering and classifying Biogeographical patterns of a dynamic earth. University of California Press, Barkley, CAGoogle Scholar
  98. Pole M (1994) The New Zealand flora-entirely long-distance dispersal? J Biogeogr 21:625–635CrossRefGoogle Scholar
  99. Rapalini AE (2005) The accretionary history of southern South America from the latest Proterozoic to the Late Palaeozoic: some palaeomagnetic constraints. In: Vaughan APM, Leat PT, Pankhurst RJ, (eds) Terrane processes at the margins of Gondwana, 246. Geological Society, London , 305–328, Special PublicationsGoogle Scholar
  100. Renner SS (2005) Relaxed molecular clocks for dating historical plant dispersal events. Trends Plant Sci 10:550–558PubMedCrossRefGoogle Scholar
  101. Riddle BR (2005) Is biogeography emerging from its identity crisis? J Biogeogr 32:185–186CrossRefGoogle Scholar
  102. Rose S (1997) Lifelines: biology beyond determinism. Oxford University Press, OxfordGoogle Scholar
  103. Rosen BR (1988) Biogeographic patterns: a perceptual overview. In: Myers AA, Giller P, (eds) Analytical biogeography: an integrated approach to the study of animal and plant distributions. Chapman and Hall, London, pp 23–56Google Scholar
  104. Salomon M (2001) Evolutionary biogeography and speciation: essay on a synthesis. J Biogeogr 28:13–27CrossRefGoogle Scholar
  105. Sanders H, Rothwell GW, Wyatt S (2007) Paleontological context for the developmental mechanisms of evolution. Int J Plant Sci 168:719–728CrossRefGoogle Scholar
  106. Scalera G (2006) TPW and Polar Motion as due to an asymmetrical Earth expansion. In: Lavecchia G and Scalera G (eds) Frontiers in Earth Sciences: New Ideas and Interpretations. Ann Geophys 49(Supplement):483–500Google Scholar
  107. Scalera G (2007) Fossils, frogs, floating islands and expanding Earth in changing-radius cartography. a comment to a discussion on Journal of Biogeography. Ann Geophys 50:789–798Google Scholar
  108. Scalera G (2008) Great and old earthquakes against great and old paradigms – paradoxes, historical roots, alternative answers. Adv Geosci 14:41–57CrossRefGoogle Scholar
  109. Scalera G, Jacob K-H, (eds) (2003) Why expanding Earth? – a book in honour of OC Hilgenberg. INGV, RomeGoogle Scholar
  110. Sdrolias M, Müller RD, Gaina C (2003) Tectonic evolution of the southwest Pacific using constraints from backarc basins. In: Hillis RR, Müller RD (eds) Evolution and dynamics of the Australian plate. Geol Soc Aust Spec Publ 22, and Geol Soc Am Spec Pap 372: 343–359Google Scholar
  111. Shields O (1998) Upper Triassic Pacific vicariance as a test of geological theories. J Biogeogr 25:203–211CrossRefGoogle Scholar
  112. Sluys R (1994) Explanations for biogeographic tracks across the Pacific Ocean: a challenge for paleogeography and historical biogeography. Prog Phys Geogr 18:42–58CrossRefGoogle Scholar
  113. Smith CH (1989) Historical biogeography: geography as evolution, evolution as geography. N Z J Zool 16:773–785CrossRefGoogle Scholar
  114. Smith AD (2007) A plate model for Jurassic to Recent intraplate volcanism in the Pacific Ocean basin. GSA Spec Pap 430:471–495Google Scholar
  115. Soja EW (1989) Postmodern geographies: the reassertion of space in critical social theory. Verso, LondonGoogle Scholar
  116. Spedding N (2003) Landscape and environment: biophysical processes, biophysical forms. In: Holloway SL, Rice SP, Valentine G, (eds) Key concepts in geography. SAGE, London, pp 281–303Google Scholar
  117. Stevens GR (1997) The Late Jurassic ammonite fauna of New Zealand. Institute of Geological and Nuclear Sciences monograph 18 (New Zealand Geological Survey Paleontological Bulletin 74). Institute of Geological & Nuclear Sciences, Lower HuttGoogle Scholar
  118. Stöckler K, Daniel IL, Lockhart PJ (2002) New Zealand Kauri (Agathis australis (D. don) Lindl., Araucariaceae) survives Oligocene drowning. Syst Biol 51:827–832PubMedCrossRefGoogle Scholar
  119. Terribile LC, Felizola Diniz-Filho JA, Rodríguez MA, Rangel TFLVB (2009) Richness patterns, species distributions and the principle of extreme deconstruction. Glob Ecol Biogeogr 18: 123–136CrossRefGoogle Scholar
  120. Turrill WB (1953) Pioneer plan geography: the phytogeographical researches of Sir Joseph Dalton Hooker. Martinus Nijhoff, The HagueGoogle Scholar
  121. Udvardy MDF (1981) The riddle of dispersal: dispersal theories and how they affect vicariance biogeography. In: Nelson G, Rosen DE, (eds) Vicariance biogeography: a critique. Columbia University Press, New York, NY, pp 6–29Google Scholar
  122. Upchurch P (2006) What’s wrong with palaeobiogeography? In: Meeting Abstracts: palaeogeography and palaeobiogeography: biodiversity in space and time, 10–13 Apr 2006, University of Cambridge, pp 5–6Google Scholar
  123. Upchurch P (2008) Gondwanan break-up: legacies of a lost world? Trends Ecol Evol 23:229–236PubMedCrossRefGoogle Scholar
  124. Upchurch P, Hunn CA, Norman DB (2002) An analysis of dinosaurian biogeography: evidence for the existence of vicariance and dispersal patterns caused by geological events. Proc R Soc Lond B 269:613–621CrossRefGoogle Scholar
  125. van Steenis CGGJ (1962) The theory of land bridges in botany, with particular references to tropical plants. Blumea 11:235–542Google Scholar
  126. Varela FJ, Maturana HR, Uribe R (1974) Autopoiesis: the organization of living systems, its characterization and a model. Biosystems 5:187–196CrossRefGoogle Scholar
  127. Vaughan APM, Livermore RA (2005) Episodicity of Mesozoic terrane accretion along the Pacific margin of Gondwana: implications for superplume-plate interactions. Geol Soc Lond Spec Publ 246:143–178CrossRefGoogle Scholar
  128. Vogel K (1990) The expansion of the earth – an alternative model to plate tectonics theory. In: Belousov V, (ed) Critical aspects of the plate tectonics theory, vol II. Athens, pp 19–34Google Scholar
  129. von Ihering H (1907) Archhelenis und Archinotis: Gesammelte Beiträge zur Geschichte der Neotropischen Region. W. Engelmann, LeipzigCrossRefGoogle Scholar
  130. Wanntorp L, Wanntorp H-E (2003) The biogeography of Gunnera L.: vicariance and dispersal. J Biogeogr 30:979–987CrossRefGoogle Scholar
  131. Waters JM, Craw D (2006) Goodbye Gondwana? New Zealand biogeography, geology, and the problem of circularity. Syst Biol 55:351–356PubMedCrossRefGoogle Scholar
  132. Wegener A (1915) Die Entstehung der Kontinente und Ozeane. Sammlung Vieweg Nr. 23, BraunschweigGoogle Scholar
  133. Williams DM (2007) Ernst Haeckel and Louis Agassiz: trees that bite and their geographical dimension. In: Ebach MC, Tangney RS, (eds) Biogeography in a changing world. Systematics association special volumes. CRC Press, Boca Raton, FL, pp 1–59Google Scholar
  134. Williams DM, Ebach MC (2008) Foundations of systematics and biogeography. Springer, New York, NYCrossRefGoogle Scholar
  135. Wilson GDF (2008) Gondwanan groundwater: subterranean connections of Australian phreatoicidean isopods (Crustacea) to India and New Zealand. Invertebr Syst 22:301–310CrossRefGoogle Scholar
  136. Winkworth RC, Wagstaff S, Glenny D, Lockhart PJ (2002) Plant dispersal N.E.W.S. from New Zealand. Trends Ecol Evol 17:514–520CrossRefGoogle Scholar
  137. Zhou ZK, Yang XF, Yang QS (2006) Land bridge and long-distance dispersal – old views, new evidence. Chin Sci Bull 51:1030–1038CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Pontificia Universidad Católica de ChileInstituto de GeografiaSantiagoChile

Personalised recommendations