Advertisement

Compost Use in Organic Farming

  • Eva ErhartEmail author
  • Wilfried Hartl
Chapter
Part of the Sustainable Agriculture Reviews book series (SARV, volume 4)

Abstract

Organic farming is a sustainable agricultural system that respects and relies on natural ecological systems. Its principles exclude the use of synthetic pesticides and fertilizers. Instead it is based on management practices that sustain soil quality and health. Composting of organic residues and the use of compost in agriculture bring back plant nutrients and organic matter to the soil that otherwise would be lost. Nevertheless, there are some potential risks associated with compost use, such as the accumulation of heavy metals or organic pollutants, which must not be neglected. Some types of organic farms, such as stockless farms or vegetable farms, have difficulties sustaining soil humus using only organic farming sources. For such farms, using biowaste compost from separately collected organic household waste might be a solution, which in addition helps to close nutrient and organic matter loops of the whole society. Here we compile information on beneficial effects and potential risks associated with compost use and on crop yields and quality, with compost under an organic farming perspective. The most important benefit of using compost is the increase in soil organic matter (SOM). Under temperate climate conditions, 6–7 t ha−1 year−1 (dry wt.) compost is sufficient to maintain the soil humus level of medium-textured soils; higher rates increase the soil humus content. Regular compost addition enhances soil fauna and soil microbial biomass and stimulates enzyme activity, leading to increased mineralization of organic matter and improved resistance against pests and diseases, both features essential for organic farming. Through the significant increase in the soil’s content of organic carbon, compost fertilization may make agricultural soil a carbon sink and thus contribute to the mitigation of the greenhouse effect. Phosphorus and potassium in compost become nearly completely plant-available within a few years after compost application. The nitrogen-fertilizer value of compost is lower. In the first years of compost application, N mineralization may vary from −15% to +15%. Nitrogen recovery in the following years depends on the site- and cultivation-specific mineralization characteristics and will roughly be the same as that of soil organic matter (SOM). Soil cation exchange capacity (CEC) increases with compost use, improving nutrient availability. Moderate rates of compost of 6–7 t ha−1 year−1 dry wt. are sufficient to substitute regular soil liming. In the available micronutrient status of the soil, only minor changes are to be expected with high-quality composts. Increasing soil organic matter exerts a substantial influence on soil structure, improving soil physical characteristics such as aggregate stability, bulk density, porosity, available water capacity, and infiltration. Increased available water capacity may protect crops against drought stress. Plant-disease suppression through compost is well established in container systems. In field systems, the same processes involving the suppression of pathogens by a highly active microflora supported by the supply of appropriate organic matter are likely at work. When using high-quality composts, such as specified by the EU regulation 2092/91, the risk of heavy metal accumulation in the soil is very low. Nitrogen mineralization from compost takes place relatively slowly and there are virtually no reports of uncontrollable N-leaching. Concentrations of persistent organic pollutants such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), or polychlorinated dibenzodioxins and dibenzofurans (PCDD/F) in high-quality composts usually approach the usual soil background values. Also the overall hygiene and hygiene concerning plant diseases and weeds are not a problem if quality composts produced in a monitored system are used. Most studies found positive yield effects of biowaste compost. However, the effect of biowaste compost applied at moderate rates usually takes some years to develop. It depends on the factors determining nutrient mineralization from soil and compost and also on crop-related factors such as the nutrient requirements and uptake dynamics of the respective crop rotation. Crops with longer growth periods can make better use of compost. Many vegetable crops respond favorably to compost fertilization, often immediately after the first application. Crop quality is usually not affected by compost fertilization in cereals and slightly positively influenced in vegetable crops.

Keywords

Soil humus nitrogen phosphorus potassium soil structure heavy metals organic pollutants yield crop quality compost organic farming Cd Zn Ni Pb Hg Cu Cr PAH dioxin CEC soil pH soil N nitrate, P, K micronutrients soil aggregate soil water plant disease maize wheat barley potato tomato broccoli cabbage cauliflower cantaloupe legume onion 

References

  1. Adriano DC (1986) Trace elements in the terrestrial environment. Springer, New YorkGoogle Scholar
  2. Alföldi T, Mäder P, Oberson A, Spiess E, Niggli U, Besson J-M (1993) DOK-Versuch: vergleichende Langzeit-Untersuchungen in den drei Anbausystemen biologisch-Dynamisch, Organisch-biologisch und Konventionell. III. Boden: Chemische Untersuchungen, 1. und 2. Fruchtfolge­periode. Schweizer Landwirtschaftl. Forschung 32(4):479–507Google Scholar
  3. Alin S, Xueyuan L, Kanamori T, Arao T (1996) Effect of long-term application of compost on some chemical properties of wheat rhizosphere and non-rhizosphere soils. Pedosphere 6:355–363Google Scholar
  4. Amlinger F, Götz B, Dreher P, Geszti J, Weissteiner C (2003a) Nitrogen in biowaste and yard waste compost: dynamics of mobilisation and availability – a review. Eur J Soil Biol 39:107–116Google Scholar
  5. Amlinger F, Peyr S, Dreher P (2003b) Kenntnisstand zur Frage des Stickstoffaustrags in Kompost-Düngungssystemen. Endbericht. Bundesministerium für Land- u. Forstwirtschaft, Umwelt- und Wasserwirtschaft (Hrsg.)., WienGoogle Scholar
  6. Amlinger F, Favoino E, Pollak M, Peyr S, Centemero M, Caima V (2004) Heavy metals and organic compounds from wastes used as organic fertilisers. Study on behalf of the European Commission, Directorate-General Environment, ENV.A.2Google Scholar
  7. Amlinger F, Peyr S, Geszti J, Dreher P, Weinfurtner K, Nortcliff S (2006) Evaluierung der nachhaltig positiven Wirkung von Kompost auf die Fruchtbarkeit und Produktivität von Böden. Literaturstudie. Bundesministerium für Land- u. Forstwirtschaft, Umwelt- und Wasserwirtschaft (Hrsg.)., WienGoogle Scholar
  8. Asche E, Steffens D, Mengel K (1994) Düngewirkung und Bodenstruktureffekte durch den Einsatz von Bioabfallkompost auf landwirtschaftlichen Kulturflächen. VDLUFA-Schriftreihe Nr. 38. Kongreßband 1994:321–324Google Scholar
  9. Avnimelech Y, Cohen A (1993) Can we expect a consistent efficiency of municipal waste compost application? Compost Sci Utiliz 4(2):7–14Google Scholar
  10. Bartl B, Hartl W, Horak O (1999) Auswirkungen langjähriger Biotonnekompostdüngung und mineralischer NPK-Düngung auf den Spurenelementgehalt von Hafer, Dinkel und Kartoffel. In: Pfannhauser W., Sima A. (Hrsg.): Tagungsband der 15. Jahrestagung der Gesellschaft für Spurenelemente und Mineralstoffe. Graz, 1.-2. 10. 1999Google Scholar
  11. Bartl B, Hartl W, Horak O (2002) Long-term application of biowaste compost versus mineral fertilization: effects on the nutrient and heavy metal contents of soil and plants. J Plant Nutr Soil Sci 165:161–165Google Scholar
  12. Baziramakenga R, Simard R (2001) Effect of deinking paper sludge compost on nutrient uptake and yields of snap bean and potatoes grown in rotation. Compost Sci Utiliz 9:115–126Google Scholar
  13. Berner A, Scherrer D, Niggli U (1995) Effect of different organic manures and garden waste compost on the nitrate dynamics in soil, N uptake and yield of winter wheat. Biol Agric Hortic 11:289–300Google Scholar
  14. Boisch A (1997) Auswirkung der Biokompostanwendung auf Boden, Pflanzen und Sickerwasser an sechs Ackerstandorten in Norddeutschland. Hamburger Bodenkundliche Arbeiten Bd. 36Google Scholar
  15. Boisch A, Rubbert M, Goetz D (1993) Stickstoffhaushalt verschiedener Bodentypen bei der Anwendung von Biokompost. VDLUFA-Kongreßband 1993. VDLUFA-Schriftenr 37:621–624Google Scholar
  16. Brändli R, Bucheli T, Kupper T, Furrer R, Stahel W, Stadelmann F, Tarradellas J (2007a) Organic pollutants in compost and digestate. Part 1. Polychlorinated biphenyls, polycyclic aromatic hydrocarbons and molecular markers. J Environ Monit 9:456–464PubMedGoogle Scholar
  17. Brändli R, Kupper T, Bucheli T, Zennegg M, Huber S, Ortelli D, Müller J, Schaffner C, Iozza S, Schmid P, Berger U, Edder P, Oehme M, Stadelmann F, Tarradellas J (2007b) Organic pollutants in compost and digestate. Part 2. Polychlorinated dibenzo-p-dioxins, and –furans, polychlorinated biphenyls, brominated flame retardants, perfluorinated alkyl substances, pesticides, and other compounds. J Environ Monit 9:465–472PubMedGoogle Scholar
  18. Brandt M, Wildhagen H (1999) Netto-N-Mineralisation nach mehrjähriger ackerbaulicher Verwertung von Bioabfallkompost und Grünguthäcksel. Mitt Dt Bodenk Gesellsch 91:743–746Google Scholar
  19. Bruns C, Schüler C (2002) Suppressive effects of composted yard wastes against soil borne plant diseases in organic horticulture. In: Michel F, Rynk R, Hoitink H (eds) Composting and compost utilization, Proc. 2002 International Symposium, May 6–8, Columbus, OHGoogle Scholar
  20. Businelli M, Gigliotti G, Giusquiani P (1996) Trace element fate in soil profile and corn plant after massive applications of urban waste compost: a six-year study. Agrochimica 40:145–152Google Scholar
  21. Büyüksönmez F, Rynk R, Hess T, Bechinski E (2000) Occurrence, degradation and fate of pesticides during composting. Part II: Occurrence and fate of pesticides in compost and composting systems. Compost Sci Utiliz 8:61–81Google Scholar
  22. Cabrera F, Diaz E, Madrid L (1989) Effect of using urban compost as manure on soil contents of some nutrients and heavy metals. J Sci Food Agric 47:159–169Google Scholar
  23. Canali S, Trinchera A, Intrigliolo F, Pompili L, Nisini L, Mocali S, Alianello A, Torrisi B (2003) Effect of long term compost utilisation on soil quality of citrus orchards in southern Italy. In: Pullammanappallil P, McComb A, Diaz L, Bidlingmaier W (eds): ORBIT 2003 Organic Recovery and Biological Treatment, Proceedings of the 4th International Conference ORBIT Association on Biological Processing. Organics: Advances for a Sustainable Society, Perth, Australia, Murdoch University, Perth, Australia, 30 April–2 May 2003, pp 505–514Google Scholar
  24. Cegarra J, Paredes C, Roig A, Bernal M, Garcia D (1996) Use of olive mill wastewater compost for crop production. Int Biodeterior Biodegrad 38:193–203Google Scholar
  25. Chaney K, Swift RS (1986) Studies on aggregate stability. II. The effect of humic substances on the stability of re-formed soil aggregates. J Soil Sci 37:337–343Google Scholar
  26. Chodak M, Borken W, Ludwig B, Beese F (2001) Effect of temperature on the mineralization of C and N of fresh and mature compost in sandy material. J Plant Nutr Soil Sci 164:289–294Google Scholar
  27. Clark MS, Horwath WR, Shennan C, Scow KM (1998) Changes in soil chemical properties resulting from organic and low-input farming practices. Agron J 90:662–671Google Scholar
  28. Cook J, Keeling A, Bloxham P (1998) Effect of green waste compost on yield parameters in spring barley (Hordeum vulgare) v. Hart. Acta Hortic 469:283–286Google Scholar
  29. Cortellini L, Toderi G, Baldoni G, Nassisi A (1996) Effects on the content of organic matter, nitrogen, phosphorus and heavy metals in soil and plants after application of compost and sewage sludge. In: De Bertoldi M, Sequi P, Lemmes B, Papi T (eds) The science of composting. Blackie Academic & Professional, London, pp 457–467Google Scholar
  30. Daamen R, Wijnands F, van der Vliet G (1989) Epidemics of diseases and pests of winter wheat at different levels of agrochemical input. J Phytopathol 125:305–319Google Scholar
  31. Darby H, Stone A, Dick R (2006) Compost and manure mediated impacts on soilborne pathogens and soil quality. Soil Sci Soc Am J 70:347–358Google Scholar
  32. De Toledo V, Lee H, Watt T, Lopez-Real J (1996) The use of dairy manure compost for maize production and its effect on soil nutrients, maize maturity and maize nutrition. In: De Bertoldi M, Sequi P, Lemmes B, Papi T (eds) The science of composting. Blackie Academic & Professional, London, pp 1126–1129Google Scholar
  33. Diez T, Krauss M (1997) Wirkung langjähriger Kompostdüngung auf Pflanzenertrag und Bodenfruchtbarkeit. Agribiol Res 50:78–84Google Scholar
  34. Drinkwater L, Wagoner P, Sarrantonio M (1998) Legume-based cropping systems have reduced carbon and nitrogen losses. Nature 396:262–265Google Scholar
  35. Ebertseder T (1997) Qualitätskriterien und Einsatzstrategien für Komposte aus Bioabfall auf landwirtschaftlich genutzten Flächen. Dissertation TU München. Shaker Verlag, AachenGoogle Scholar
  36. Ebertseder T, Gutser R, Claassen N (1997) Bioabfallkompost – Qualität und Anwendung in der Landwirtschaft. In: Gronauer A, Claassen N, Ebertseder T, Fischer P, Gutser R, Helm M, Popp L, Schön H (eds) Bioabfallkompostierung – Verfahren und Verwertung. Bayerisches Landesamt für Umweltschutz, Schriftenreihe Heft 139, pp 133–256Google Scholar
  37. Erhart E, Burian K (1997) Quality and suppressiveness of Austrian biowaste composts. Compost Sci Utiliz 5(3):15–24Google Scholar
  38. Erhart E, Feichtinger F, Hartl W (2007) Nitrogen leaching losses under crops fertilized with biowaste compost compared with mineral fertilization. J Plant Nutr Soil Sci 170:608–614Google Scholar
  39. Erhart E, Hartl W, Bartl B (2003) Auswirkungen von Kompostdüngung unter den Bedingungen des Biologischen Landbaus auf die Kaliumversorgung der Kulturpflanzen und den Kaliumgehalt des Bodens. In: Freyer B (Hrsg.): Ökologischer Landbau der Zukunft: Beiträge zur 7. Wissenschaftstagung zum Ökologischen Landbau, 24. - 26. 2. 2003 in Wien. Verlag Univ. f. Bodenkultur, Wien, pp 509–510Google Scholar
  40. Erhart E, Hartl W, Feichtinger F (2002) Nutrient contents in the soil profile after five years of compost fertilization versus mineral fertilization. In: Michel F, Rynk R, Hoitink H (eds) Composting and compost utilization. Proceedings of the 2002 International Symposium, Columbus, OH, May 6–8Google Scholar
  41. Erhart E, Hartl W, Putz B (2005) Biowaste compost affects yield, nitrogen supply during the vegetation period and crop quality of agricultural crops. Eur J Agron 23:305–314Google Scholar
  42. Erhart E, Hartl W, Putz B (2008) Total soil heavy metal contents and mobile fractions after 10 years of biowaste compost fertilization. J Plant Nutr Soil Sci 171:378–383Google Scholar
  43. EU Council Regulation No 2092/91 of 24 June 1991 on organic production of agricultural products and indications referring thereto on agricultural products and foodstuffs. Official Journal L 198, 22. 7. 1991, p. 1 ffGoogle Scholar
  44. Evanylo G, Sherony C (2002) Agronomic and environmental effects of compost use for sustainable vegetable production. Composting and compost utilization. In: International symposium, Columbus, OH, 6–8 May 2002Google Scholar
  45. Fischer M, Raupp J, Mäder P, Dubois D, Römheld V (2005) Micronutrient status in two long-term trials with fertilisation treatments and different cropping systems. In: Poster presented at the international conference on organic agriculture‚‘Researching Sustainable Systems’, Adelaide, Australia, 21–23 Sept 2005Google Scholar
  46. Fliessbach A, Hany R, Rentsch D, Frei R, Eyhorn F (2000) DOC trial: soil organic matter quality and soil aggregate stability in organic and conventional soils. In: Alföldi T, Lockeretz W, Niggli U (Hrsg.) Proceedings of the 13th international IFOAM scientific conference. vdf Hochschulverlag, Zürich, SwitzerlandGoogle Scholar
  47. Fliessbach A, Mäder P (2000) Microbial biomass and size-density fractions differ between soils of organic and conventional agricultural systems. Soil Biol Biochem 32:757–768Google Scholar
  48. Fliessbach A, Oberholzer H-R, Gunst L, Mäder P (2007) Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agric Ecosyst Environ 118:273–284Google Scholar
  49. von Fragstein P, Schmidt H (1999) External N sources in an organic stockless crop rotation – useful or useless additives? In: Olesen J, Eltun R, Gooding M, Jensen E, Köpke U (eds) Designing and testing of crop rotations for organic farming. Proceedings from an international workshop. Danish Research Centre for Organic Farming, Denmark, pp 203–212Google Scholar
  50. Frohne R (1990) Kompostdüngung als Meliorationsmaßnahme auf verdichteten Böden. In: Dott W, Fricke K, Oetjen R (eds) Biologische Verfahren der Abfallbehandlung. EF-Verlag für Energie und Umwelttechnik, BerlinGoogle Scholar
  51. Fuchs J (2002) Practical use of quality compost for plant health and vitality improvement. In: Insam H, Riddech N, Klammer S (eds) Microbiology of composting. Springer Berlin, pp 435–444Google Scholar
  52. Gagnon B, Simard R (1999) Nitrogen and phosphorus release from on-farm and industrial composts. Can J Soil Sci 79:481–489Google Scholar
  53. Gagnon B, Simard R, Robitaille R, Goulet M, Rioux R (1997) Effect of composts and inorganic fertilizers on spring wheat growth and N uptake. Can J Soil Sci 77:487–495Google Scholar
  54. Gagnon B, Simard R, Goulet M, Robitaille R, Rioux R (1998) Soil nitrogen and moisture as influenced by composts and inorganic fertilizer rate. Can J Soil Sci 78:207–215Google Scholar
  55. Giusquiani P, Pagliai M, Gigliotti G, Businelli D, Benetti A (1995) Urban waste compost: effects on physical, chemical, and biochemical soil properties. J Environ Qual 24:175–182Google Scholar
  56. Golueke CG (1975) Composting. A study of the process and its principles, 3rd edn. Rodale Press, Emmaus, PAGoogle Scholar
  57. Gray E, Tawhid A (1995) Effect of leaf mulch on seedling emergence, plant survival, and production of bush snap beans. J Sustain Agric 6:15–20Google Scholar
  58. Hadas A, Portnoy R (1997) Rates of decomposition in soil and release of available nitrogen from cattle manure and municipal waste compost. Compost Sci Utiliz 5(3):48–54Google Scholar
  59. Hartl W, Erhart E (2003) Long term fertilization with compost – effects on humus content and cation exchange capacity. Ecol Future, Bulgarian J Ecol Sci 2(3–4):38–42Google Scholar
  60. Hartl W, Erhart E (2005) Crop nitrogen recovery and soil nitrogen dynamics in a 10-year field experiment with biowaste compost. J Plant Nutr Soil Sci 168:781–788Google Scholar
  61. Hartl W, Erhart E, Bartl B, Horak O (2003) Beitrag von Biotonnekompost zur Phosphorversorgung in viehlosen biologisch wirtschaftenden Betrieben. In: Freyer B (Hrsg.) Ökologischer Landbau der Zukunft: Beiträge zur 7. Wissenschaftstagung zum Ökologischen Landbau, 24–26 Feb 2003 in Wien. Verlag University of Bodenkultur, Wien, pp 517–518Google Scholar
  62. Hartz T, Giannini C (1998) Duration of composting of yard wastes affects both physical and chemical characteristics of compost and plant growth. HortScience 33:1192–1196Google Scholar
  63. Haynes RJ (2000) Interactions between soil organic matter status, cropping history, method of quantification and sample pretreatment and their effects on measured aggregate stability. Biol Fertil Soils 30:270–275Google Scholar
  64. Haynes R, Naidu R (1998) Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review. Nutr Cycl Agroecosyst 51:123–137Google Scholar
  65. He Z, Yang X, Kahn B, Stoffella P, Calvert D (2001) Plant nutrition benefits of phosphorus, potassium, calcium, magnesium, and micronutrients from compost utilization. In: Stoffella PJ, Kahn BA (eds) Compost utilization in horticultural cropping systems. Lewis Publishers, Boca Raton, FL, pp 307–320Google Scholar
  66. Hoitink H, Boehm M (1999) Biocontrol within the context of soil microbial communities: a substrate-dependent phenomenon. Annu Rev Phytopathol 37:427–446PubMedGoogle Scholar
  67. Hoitink H, Fahy P (1986) Basis for the control of soilborne plant pathogens with composts. Annu Rev Phytopathol 24:93–114Google Scholar
  68. Hoitink H, Krause M, Han D (2001) Spectrum and mechanisms of plant disease control with composts. In: Stoffella PJ, Kahn BA (eds) Compost utilization in horticultural cropping systems. Lewis Publishers, Boca Raton, FL, pp 263–273Google Scholar
  69. Hudson BD (1994) Soil organic matter and available water capacity. J Soil Water Conserv 49:189–194Google Scholar
  70. Hue N, Ikawa H, Silva J (1994) Increasing plant-available phosphorus in an ultisol with yard-waste compost. Commun Soil Sci Plant Anal 25:3291–3303Google Scholar
  71. Iglesias-Jimenez E, Alvarez C (1993) Apparent availability of nitrogen in composted municipal refuse. Biol Fertil Soils 16:313–318Google Scholar
  72. Illera V, Walter I, Cuevas G, Cala V (1999) Biosolid and municipal solid waste effects on physical and chemical properties of a degraded soil. Agrochimica 43:178–186Google Scholar
  73. Jakobsen ST (1996) Leaching of nutrients from pots with and without applied compost. Resour Conserv Recycl 17:1–11Google Scholar
  74. Kahle P, Belau L (1998) Modellversuche zur Prüfung der Verwertungsmöglichkeiten von Bioabfallkompost in der Landwirtschaft. Agribiol Res 51:193–200Google Scholar
  75. Khalilian A, Sullivan M, Mueller J, Shiralipour A, Wolak F, Williamson R, Lippert R (2002) Effects of surface application of MSW compost on cotton production – soil properties, plant responses, and nematode management. Compost Sci Utiliz 10:270–279Google Scholar
  76. Klasink A, Steffens G (1996) Grünkomposteinsatz in der Landwirtschaft - Ergebnisse aus einem Feldversuch. In: Braun C (ed) Sekundärrohstoffe im Stoffkreislauf der Landwirtschaft. VDLUFA Kongreßband 1996, VDLUFA-Verlag, Darmstadt, pp 385–388Google Scholar
  77. Kluge R, Mokry M (2000) Ist der produktionsbezogene Bodenschutz bei der landbaulichen Verwertung von Komposten zu gewährleisten? – Ergebnisse eines Forschungsprojektes aus Baden-Württemberg. Mitt Dt Bodenkundl Gesellsch 93:311–314Google Scholar
  78. Kolbe H (2007) Einfache Methode zur standortangepassten Humusbilanzierung von Ackerland unterschiedlicher Anbauintensität. In: Zikeli S, Claupein W, Dabbert S, Kaufmann B, Müller T, Valle Zárate A (Hrsg.) Zwischen Tradition und Globalisierung. Beiträge zur 9. Wissenschaftstagung Ökologischer Landbau. Universität Hohenheim, 20–23 March 2007. Verlag Dr. Köster, Berlin, pp 5–8Google Scholar
  79. Körschens M, Weigel A, Schulz E (1998) Turnover of soil organic matter (SOM) and long-term balances – tools for evaluating sustainable productivity of soils. Pflanzenernähr Bodenk 161:409–424Google Scholar
  80. Kromp B, Pfeiffer L, Meindl P, Hartl W, Walter B (1996) The effects of different fertilizer regimes on the populations of earthworms and beneficial arthropods found in a wheat field. In: IOBC/WPRS-Bulletin 19(11) Working group meeting “Integrated control in field vegetable crops”, 6–8 Nov 1995, Giutte, France, pp 184–190Google Scholar
  81. Lalande R, Gagnon B, Simard R (1998) Microbial biomass C and alkaline phosphatase activity in two compost amended soils. Can J Soil Sci 78:581–587Google Scholar
  82. Leclerc B, Georges P, Cauwel B, Lairon D (1995) A five year study on nitrate leaching under crops fertilised with mineral and organic fertilisers in lysimeters. In: International workshop on nitrogen leaching in ecological agriculture. Biol Agric Hortic 11:301–308Google Scholar
  83. Leithold G, Hülsbergen K-J, Michel D, Schönmeier H (1997) Humusbilanzierung – Methoden und Anwendung als Agrar-Umweltindikator. In: DBU (Deutsche Bundesstiftung Umwelt, ed) Umweltverträgliche Pflanzenproduktion – Indikatoren, Bilanzierungsansätze und ihre Einbindung in Ökobilanzen. Fachtagung, 11–12 July 1996, Wittenberg. Zeller Verlag, OsnabrückGoogle Scholar
  84. Lewis J, Lumsden R, Milner P, Keinath A (1992) Suppression of damping-off of peas and cotton in the field with composted sewage sludge. Crop Prot 11:260–266Google Scholar
  85. Lievens B, Vaes K, Coosemans J, Ryckeboer J (2001) Systemic resistance induced in cucumber against Pythium root rot by source separated household waste and yard trimmings composts. Compost Sci Utiliz 9:221–229Google Scholar
  86. Lumsden R, Lewis J, Millner P (1983) Effect of composted sewage sludge on several soilborne pathogens and diseases. Phytopathology 73:1543–1548Google Scholar
  87. Lynch D, Voroney R, Warman P (2004) Nitrogen availability from composts for humid region perennial grass and legume-grass forage production. J Environ Qual 33:1509–1520PubMedGoogle Scholar
  88. Lynch D, Voroney R, Warman P (2005) Soil physical properties and organic matter fractions under forages receiving composts, manure or fertilizer. Compost Sci Utiliz 13:252–261Google Scholar
  89. Mäder P, Fliessbach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming. Science 296:1694–1697PubMedGoogle Scholar
  90. Madrid F, Trasierra M, Lopez R, Murillo J, Cabrera F (1998) Municipal solid waste compost utilization in greenhouse-cultivated tomato. Acta Hortic 469:297–304Google Scholar
  91. Magdoff F, Weil RR (2004) Soil organic matter management strategies. In: Magdoff F, Weil RR (eds) Soil organic matter in sustainable agriculture. CRC Press, Boca Raton, FL, pp 45–65Google Scholar
  92. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, New YorkGoogle Scholar
  93. Martins O, Kowald R (1988) Auswirkung des langjährigen Einsatzes von Müllkompost auf einen mittelschweren Ackerboden. Z Kulturtech Flurbereinigung 29:234–244Google Scholar
  94. Mary B, Recous S, Darwis D, Robin D (1996) Interactions between decomposition of plant residues and nitrogen cycling in soil. Plant Soil 181:71–82Google Scholar
  95. Maynard A (1993) Nitrate leaching from compost-amended soils. Compost Sci Utiliz 1:65–72Google Scholar
  96. Maynard A (1994) Sustained vegetable production for three years using composted animal manures. Compost Sci Utiliz 2:88–96Google Scholar
  97. Maynard A (2000) Compost: the process and research, Bulletin 966. The Connecticut Agricultural Experiment Station, New Haven, CTGoogle Scholar
  98. Maynard A, Hill D (2000) Cumulative effect of leaf compost on yield and size distribution in onions. Compost Sci Utiliz 8:12–18Google Scholar
  99. Melero S, Madejon E, Herencia J, Ruiz J (2007) Biochemical properties of two different textured soils (loam and clay) after the addition of two different composts during conversion to organic farming. Span J Agric Res 5(4):593–604Google Scholar
  100. Nevens F, Reheul D (2003) The application of vegetable, fruit and garden waste (VFG) compost in addition to cattle slurry in a silage maize monoculture: nitrogen availability and use. Eur J Agron 19:189–203Google Scholar
  101. Noble R, Roberts SJ (2003) A review of the literature on eradication of plant pathogens and nematodes during composting, disease suppression and detection of plant pathogens in compost. The Waste and Resources Action Programme, The Old Academy, Oxon, UKGoogle Scholar
  102. Oehl F, Oberson A, Probst M, Fliessbach A, Roth HR, Frossard E (2001) Kinetics of microbial phosphorus uptake in cultivated soils. Biol Fertil Soils 34:31–41Google Scholar
  103. Oehmichen J, Gröblinghoff F-F, Reinders A, Dörendahl A (1994) Mit Bio-Kompost Mineraldünger einsparen. Dtsch Landtech Z 12(94):32–36Google Scholar
  104. Oehmichen J, Gröblinghoff F, Reinders A, Dörendahl A (1995) Untersuchung über die Verwendung von Bio-Kompost als Kreislaufdünger im Landbau. Müll Abfall 2(95):74–82Google Scholar
  105. Ozores-Hampton M, Hanlon E, Bryan H, Schaffer B (1997) Cadmium, copper, lead, nickel and zinc concentrations in tomato and squash grown in MSW compost-amended calcareous soil. Compost Sci Utiliz 5(4):40–45Google Scholar
  106. Pardini G, Volterrani M, Grossi N (1993) Effects of municipal solid waste compost on soil fertility and nitrogen balance: lysimetric trials. Agric Med 123:303–310Google Scholar
  107. Parkinson R, Fuller M, Groenhof A (1999) An evaluation of greenwaste compost for the production of forage maize (Zea mays L.). Compost Sci Utiliz 7:72–80Google Scholar
  108. Pascual J, Garcia C, Hernandez T, Ayuso M (1997) Changes in the microbial activity of an arid soil amended with urban organic wastes. Biol Fertil Soils 24:429–434Google Scholar
  109. Petersen U, Stöppler-Zimmer H (1999) Orientierende Feldversuche zur Anwendung von Biokomposten unterschiedlichen Rottegrades. In: UBA (Hrsg., 1999) Stickstoff in Bioabfall- und Grünschnittkompost – Bewertung von Bindungsdynamik und Düngewert. Runder Tisch Kompost. Wien, 29–30 Sept 1998. Umweltbundesamt, WienGoogle Scholar
  110. Pfotzer GH, Schüler C (1999) Effects of different compost amendments on soil biotic and faunal feeding activity in an organic farming system. In: Kromp B (ed) Entomological research in organic agriculture. A. B. Academic, Bicester, UK, pp 1–4Google Scholar
  111. Poier KR, Richter J (1992) Spatial distribution of earthworms and soil properties in an arable loess soil. Soil Biol Biochem 24:1601–1608Google Scholar
  112. Raviv M, Krasnovsky A, Medina S, Reuveni R, Freiman L, Bar A (1998) Compost as a controlling agent against Fusarium wilt of sweet basil. Acta Hortic 469:375–381Google Scholar
  113. Reider C, Herdman W, Drinkwater L, Janke R (2000) Yields and nutrient budgets under composts, raw dairy manure and mineral fertilizer. Compost Sci Utiliz 8:328–339Google Scholar
  114. Rinaldi M, Vonella A, Garofalo P (2007) Organic fertilization in a “tomato-pea” rotation in southern Italy. In: Niggli U, Leifert C, Alföldi T, Lück L, Willer H (eds) Improving sustainability in organic and low input food production systems. Proceedings of the 3rd international congress of the European integrated project quality low input food (QLIF). University of Hohenheim, Germany, 20–23 March 2007. Research Institute of Organic Agriculture FiBL, CH-FrickGoogle Scholar
  115. Rodrigues M, Lopez-Real J, Lee H (1996) Use of composted societal organic wastes for sustainable crop production. In: De Bertoldi M, Sequi P, Lemmes B, Papi T (eds) The science of composting. Blackie Academic & Professional, London, pp 447–456Google Scholar
  116. Roe N, Cornforth G (1997) Yield effects and economic comparison of using fresh or composted dairy manure amendments on double-cropped vegetables. HortScience 32:462Google Scholar
  117. Roinila P, Väisänen J, Granstedt A, Kunttu S (2003) Effects of different organic fertilization practices and mineral fertilization on potato quality. Biol Agric Hortic 21:165–194Google Scholar
  118. Römer W, Gerke J, Lehne P (2004) Phosphate fertilisation increases nitrogen fixation of legumes. Ökol Landbau 132(4):37–39Google Scholar
  119. Ros M, Klammer S, Knapp B, Aichberger K, Insam H (2006) Long-term effects of compost amendment of soil on functional and structural diversity and microbial activity. Soil Use Manag 22:209–218Google Scholar
  120. Sager M (1997) Possible trace metal load from fertilizers. Die Bodenkultur 48:217–223Google Scholar
  121. Sahin H (1989) Auswirkung des langjährigen Einsatzes von Müllkompost auf den Gehalt an organischer Substanz, die Regenwurmaktivität, die Bodenatmung sowie die Aggregatstabilität und die Porengrößenverteilung. Mitt Dt Bodenkundl Ges 59/II:1125–1130Google Scholar
  122. Sanchez J, Willson T, Kizilkaya K, Parker E, Harwood R (2001) Enhancing the mineralizable nitrogen pool through substrate diversity in long term cropping systems. Soil Sci Soc Am J 65:1442–1447Google Scholar
  123. Sauerbeck D (1992) Funktionen und Bedeutung der organischen Substanzen für die Bodenfrucht­barkeit – ein Überblick. Berichte über Landwirtschaft Sdh. 206. Landwirtschaftsverlag Münster-HiltrupGoogle Scholar
  124. Schachtschabel P, Blume H-P, Brümmer G, Hartge K, Schwertmann U (1998) Lehrbuch der Bodenkunde. 14. Aufl., Enke Verlag, StuttgartGoogle Scholar
  125. Scherer H, Werner W, Neumann A (1996) N-Nachlieferung und N-Immobilisierung von Komposten mit unterschiedlichem Ausgangsmaterial, Rottegrad und C/N-Verhältnis. Agribiol Res 49:120–129Google Scholar
  126. Schnug E, Haneklaus S (2002) Landwirtschaftliche Produktionstechnik und Infiltration von Böden – Beitrag des ökologischen Landbaus zum vorbeugenden Hochwasserschutz. Landbauforsch Völkenrode 52:197–203Google Scholar
  127. Schwaiger E, Wieshofer I (1996) Auswirkungen von Biotonnenkompost auf bodenmikrobiologische und enzymatische Parameter im biologischen Landbau. Mitt Dt Bodenk Ges 81:229–232Google Scholar
  128. Sekera F, Brunner A (1943) Beiträge zur Methodik der Gareforschung. Bodenk Pflanzenern 29:169–212Google Scholar
  129. Serra-Wittling C, Houot S, Barriuso E (1995) Soil enzymatic response to addition of municipal solid-waste compost. Biol Fertil Soils 20:226–236Google Scholar
  130. Shepherd M, Harrison R, Webb J (2002) Managing soil organic matter – implications for soil structure on organic farms. Soil Use Manag 18:284–192Google Scholar
  131. Siebert S, Leifeld J, Kögel-Knabner I (1998) Stickstoffmineralisierung von Bioabfallkomposten unterschiedlicher Rottegrade nach Anwendung auf landwirtschaftlich genutzte und rekultivierte Böden. Z Kulturtech Landentwicklung 39:69–74Google Scholar
  132. Siegrist S, Schaub D, Pfiffner L, Mäder P (1998) Does organic agriculture reduce soil erodibility? The results of a long-term field study on loess in Switzerland. Agric Ecosyst Environ 69:253–264Google Scholar
  133. Smidt E, Tintner J (2007) Application of differential scanning calorimetry (DSC) to evaluate the quality of compost organic matter. Thermochim Acta 459:87–93Google Scholar
  134. Steffens D, Pape H, Asche E (1996) Einfluß von Bioabfallkompost verschiedener Reifegrade auf die Bodenfruchtbarkeit. VDLUFA-Kongreßband 1996, VDLUFA-Schriftenr 44:405–408. VDLUFA-Verlag, DarmstadtGoogle Scholar
  135. Stevenson FJ (1982) Humus chemistry. Wiley, New YorkGoogle Scholar
  136. Stilwell D (1993) Evaluating the suitability of MSW compost as a soil amendment in field grown tomatoes. Part B: Elemental analysis. Compost Sci Utiliz 1(3):66–72Google Scholar
  137. Stoffella P, Graetz D (1996) Sugarcane filtercake compost influence on tomato emergence, seedling growth, and yields. In: De Bertoldi M, Sequi P, Lemmes B, Papi T (eds) The science of composting. Blackie Academic & Professional, London, pp 1351–1356Google Scholar
  138. Stone A (2002) Organic matter-mediated suppression of Pythium, Phytophthora and Aphanomyces root rots in field soils. In: Michel F, Rynk R, Hoitink H (eds) Composting and compost utilization, Proceedings of 2002 international symposium, Columbus, OH, 6–8 May 2002Google Scholar
  139. Stöppler-Zimmer H, Petersen U (1997) Bewertungskriterien für Qualität und Rottestadium von Bioabfallkompost unter Berücksichtigung der verschiedenen Anwendungsbereiche. Orientierende Feldversuche mit Bioabfallkomposten unterschiedlichen Rottegrades. In: Umweltbundesamt (ed) Neue Techniken zur Kompostierung, Verwertung auf landwirtschaftlichen Flächen. Band I. Verlag UBA, BerlinGoogle Scholar
  140. Strumpf T, Pestemer W, Buchhorn R (2004) Nähr- und Schadstoffstatus in Boden und Pflanze nach Anwendung von Bioabfallkompost aus Ballungsgebieten im Gemüseanbau. Nachrichtenbl Dtsch Pflanzenschutzd 56:264–268Google Scholar
  141. Stukenholtz P, Koenig R, Hole D, Miller B (2002) Partitioning the nutrient and nonnutrient contributions of compost to dryland-organic wheat. Compost Sci Utiliz 10:238–243Google Scholar
  142. Termorshuizen A, von Rijn E, Blok W (2005) Phytosanitary risk assessment of composts. Compost Sci Utiliz 13:108–115Google Scholar
  143. Timmermann F, Kluge R, Bolduan R, Mokry M, Janning S (2003) Nachhaltige Kompostverwertung – pflanzenbauliche Vorteilswirkungen und mögliche Risiken. In: Gütegemeinschaft Kompost Region Süd e.V. (Hrsg.) Nachhaltige Kompostverwertung in der Landwirtschaft. Abschlußbericht. LUFA Augustenberg, KarlsruheGoogle Scholar
  144. Tisdall JM, Oades JM (1982) Organic matter and water-stable aggregates in soils. J Soil Sci 33:141–163Google Scholar
  145. VDLUFA (ed) (2004) Standpunkt Humusbilanzierung. Methode zur Beurteilung und Bemessung der Humusversorgung von Ackerland. VDLUFA Verlag, BonnGoogle Scholar
  146. Vogtmann H, Fricke K (1989) Nutrient value and utilization of biogenic compost in plant production. Agric Ecosyst Environ 27:471–475Google Scholar
  147. Vogtmann H, Fricke K, Turk T (1993a) Quality, physical characteristics, nutrient content, heavy metals and organic chemicals in biogenic waste compost. Compost Sci Utiliz 1:69–87Google Scholar
  148. Vogtmann H, Matthies K, Kehres B, Meier-Ploeger A (1993b) Enhanced food quality: effects of composts on the quality of plant foods. Compost Sci Utiliz 1:82–100Google Scholar
  149. Volterrani M, Pardini G, Gaetani M, Grossi N, Miele S (1996) Effects of application of municipal solid waste compost on horticultural species yield. In: De Bertoldi M, Sequi P, Lemmes B, Papi T (eds) The science of composting. Blackie Academic & Professional, London, pp 1385–1388Google Scholar
  150. Wegener H-R, Moll W (1997) Beeinflussung des Bodens in physikalischer und chemischer Hinsicht. Handbuch Müll und Abfall, Lieferung 2/97Google Scholar
  151. Weil RR, Magdoff F (2004) Significance of soil organic matter to soil quality and health. In: Magdoff F, Weil RR (eds) Soil organic matter in sustainable agriculture. CRC Press, Boca Raton, FL, pp 1–43Google Scholar
  152. Workneh F., van Bruggen A., Drinkwater L., Shennan C (1993) Variables associated with corky root and Phytophthora root rot of tomatoes in organic and conventional farms. Phytopathology 83:581–589Google Scholar
  153. Zauner G, Stahr K (1997) Kompost- und Grünguthäckselanwendung in der Landwirtschaft – Erste Ergebnisse zu bodenphysikalischen und –mikrobiologischen Parametern. Mitt Dt Bodenkundl Ges 83:391–392Google Scholar
  154. Zethner G, Götz B, Amlinger F (2000) Qualität von Komposten aus der getrennten Sammlung. UBA Monographien, Bd. 133. Umweltbundesamt, WienGoogle Scholar
  155. Zhang M, Heaney D, Solberg E, Heriquez B (2000) The effect of MSW compost on metal uptake and yield of wheat, barley and canola in less productive farming soils of Alberta. Compost Sci Utiliz 8:224–235Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Bio Forschung Austria, formerly Ludwig Boltzmann-Institute for Biological Agriculture and Applied EcologyViennaAustria

Personalised recommendations