Skip to main content

Tree Rings and Natural Hazards: An Introduction

  • Chapter
  • First Online:
Tree Rings and Natural Hazards

Part of the book series: Advances in Global Change Research ((AGLO,volume 41))

Abstract

Each year, natural disasters claim thousands of lives and lead to economic losses of several billion US dollars worldwide. In 2008, natural disasters caused 240,500 fatalities and losses of more than US$250 billion (SwissRe 2009), making it one of the largest annual amounts ever recorded. More than 90% of people killed by catastrophic events in 2008 were during two tropical cyclones (Myanmar and Philippines) and the 7.9 moment-magnitude earthquake hitting China’s Sichuan region in May 2008 (Rodriguez et al. 2009). In February 2009, severe bush fires destroyed several villages in Victoria (Australia), killing more than 90 people and leaving 700 houses in ashes (Shaban 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alestalo J (1971) Dendrochronological interpretation of geomorphic processes. Fennia 105:1–139

    Google Scholar 

  • Allen R, Bellingham P, Wiser S (1999) Immediate damage by an earthquake to a temperate montane forest. Ecology 80:708–714

    Article  Google Scholar 

  • Aulitzky H (1992) Die Sprache der “Stummen Zeugen”. International Conference Interpraevent 1992, pp 139–174

    Google Scholar 

  • Bannan MW (1936) Vertical resin ducts in the secondary wood of the Abietineae. New Phytol 35:11–46

    Article  Google Scholar 

  • Bannan MW (1941) Vascular rays and adventitious root formation in Thuja occidentalis L. Am J Bot 28:457–463

    Article  Google Scholar 

  • Bodoque JM, Diez-Herrero A, Martin-Duque JF, Rubiales JM, Godfrey A, Pedraza J, Carrasco RM, Sanz MA (2005) Sheet erosion rates determined by using dendrogeomorphological analysis of exposed tree roots: Two examples from Central Spain. Catena 64:81–102

    Article  Google Scholar 

  • Bollschweiler M (2007) Spatial and temporal occurrence of past debris flows in the Valais Alps – results from tree-ring analysis. GeoFocus 20:1–182

    Google Scholar 

  • Bollschweiler M, Stoffel M, Schneuwly DM (2008a) Dynamics in debris-flow activity on a forested cone – A case study using different dendroecological approaches. Catena 72:67–78

    Article  Google Scholar 

  • Bollschweiler M, Stoffel M, Schneuwly DM, Bourqui K (2008b) Traumatic resin ducts in Larix decidua stems impacted by debris flows. Tree Physiol 28:255–263

    Article  Google Scholar 

  • Bosch O, Gutierrez E (1999) La sucésion en los bosques de Pinus uncinata del Pirineo. De los anillos de crecimiento a la historia del bosque. Ecologia 13:133–171

    Google Scholar 

  • Braam RR, Weiss EEJ, Burrough PA (1987a) Dendrogeomorphological analysis of mass movement – a technical note on the research method. Catena 14:585–589

    Article  Google Scholar 

  • Braam RR, Weiss EEJ, Burrough PA (1987b) Spatial and temporal analysis of mass movement using dendrochronology. Catena 14:573–584

    Article  Google Scholar 

  • Bräker OU (2002) Measuring and data processing in tree-ring research – A methodological introduction. Dendrochronologia 20:203–216

    Article  Google Scholar 

  • Butler DR (1979) Snow avalanche path terrain and vegetation, Glacier National Park, Montana. Arct Alp Res 11:17–32

    Article  Google Scholar 

  • Butler DR (1985) Vegetational and geomorphic change on snow avalanche path, Glacier National Park, Montana, USA. Great Basin Nat 45:313–317

    Google Scholar 

  • Butler DR, Malanson GP (1985) A history of high-magnitude snow avalanches, Southern-Glacier-National-Park, Montana, USA. Mt Res Dev 5:175–182

    Article  Google Scholar 

  • Butler DR, Malanson GM, Oelfke JG (1987) Tree-ring analysis and natural hazard chronologies: minimum sample sizes and index values. Prof Geogr 39:41–47

    Article  Google Scholar 

  • Camarero JJ, Guerrero-Campo J, Gutierrez E (1998) Tree-ring growth and structure of Pinus uncinata and Pinus sylvestris in the Central Spanish Pyrenees. Arct Alp Res 30:1–10

    Article  Google Scholar 

  • Carrara PE, Carroll TR (1979) Determination of erosion rates from exposed tree roots in the Piceance Basin, Colorado. Earth Surf Process Land 4:307–317

    Article  Google Scholar 

  • Carrara PE, O’Neill JM (2003) Tree-ring dated landslide movements and their relationship to seismic events in southwestern Montana, USA. Quat Res 59:25–35

    Article  Google Scholar 

  • Casteller A, Stöckli V, Villalba R, Mayer AC (2007) An evaluation of dendroecological indicators of snow avalanches in the Swiss Alps. Arct Antarc Alp Res 39:218–228

    Article  Google Scholar 

  • Clague JJ, Souther JG (1982) The Dusty Creek landslide on Mount Cayley, British Columbia. Can J Earth Sci 19:524–539

    Article  Google Scholar 

  • Cook ER (1987) The decomposition of tree-ring series for environmental studies. Tree-Ring Bull 47:37–59

    Google Scholar 

  • Cook ER, Kairiukstis LA (1990) Methods of dendrochronology – Applications in the environmental sciences. Kluwer, London

    Google Scholar 

  • Dorren LKA, Berger F (2006) Stem breakage of trees and energy dissipation during rockfall impacts. Tree Physiol 26:63–71

    Article  Google Scholar 

  • Du S, Yamamoto F (2007) An overview of the biology of reaction wood Formation. J Integr Plant Biol 49:131–143

    Article  Google Scholar 

  • EMDAT (2009) Emergency events database. www.emdat.be

  • Fantucci R, Sorriso-Valvo M (1999) Dendrogeomorpholigical analysis of a slope near Lago, Calabria (Italy). Geomorphology 30:165–174

    Article  Google Scholar 

  • Friedman JM, Vincent KR, Shafroth PB (2005) Dating floodplain sediments using tree-ring response to burial. Earth Surf Process Land 30:1077–1091

    Article  Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic, London

    Google Scholar 

  • Gärtner H, Schweingruber F, Dikau R (2001) Determination of erosion rates by analyzing structural changes in the growth pattern of exposed roots. Dendrochronologia 19:81–91

    Google Scholar 

  • Grissino-Mayer HD (2003) A manual and tutorial for the proper use of an increment borer. Tree-Ring Res 59:63–79

    Google Scholar 

  • Gutsell SL, Johnson EA (2002) Accurately ageing trees and examining their height-growth rates: implications for interpreting forest dynamics. J Ecol 90:153–166

    Article  Google Scholar 

  • Hughes MK, Brown PM (1992) Drought frequency in central California since 101 B.C. recorded in giant sequoia tree rings. Clim Dynam 6:161–167

    Article  Google Scholar 

  • Hupp CR, Osterkamp WR, Thornton JL (1987) Dendrogeomorphic evidence and dating of recent debris flows on Mount Shasta, northern California. US Geol Surv Prof Paper 1396B:1–39

    Google Scholar 

  • Koch J (2009) Improving age estimates for late Holocene glacial landforms using dendrochronology – Some examples from Garibaldi Provincial Park, British Columbia. Quat Geochronol 4:130–139

    Article  Google Scholar 

  • La Marche VC (1968) Geomorphic and dendroecological impacts of slushflows in central Gaspé Peninsula (Québec, Canada). US Geol Surv Prof Paper 352-I

    Google Scholar 

  • LaMarche VC (1966) An 800-year history of stream erosion as indicated by botanical evidence. US Geol Surv Prof Paper 550D:83–86

    Google Scholar 

  • Larson PR (1994) The vascular cambium. Development and structure. Springer, Berlin

    Book  Google Scholar 

  • Lin A, Lin S (1998) Tree damage and surface displacement: the 1931 M 8.0 Fuyun earthquake. J Geol 106:751–757

    Article  Google Scholar 

  • Luchi N, Ma R, Capretti P, Bonello P (2005) Systemic induction of traumatic resin ducts and resin flow in Austrian pine by wounding and inoculation with Sphaeropsis sapinea and Diplodia scrobiculata. Planta 221:75–84

    Article  Google Scholar 

  • Lundström T, Stoffel M, Stöckli V (2008) Fresh-stem bending of silver fir and Norway spruce. Tree Physiol 28:355–366

    Article  Google Scholar 

  • Lundström T, Heiz U, Stoffel M, Stöckli V (2007) Fresh-wood bending: linking the mechanical and growth properties of a Norway spruce stem. Tree Physiol 27:1229–1241

    Article  Google Scholar 

  • Marin P, Filion L (1992) Recent dynamics of sub-arctic dunes as determined by tree-ring analysis of white spruce, Hudson Bay, Quebec. Quat Res 38:316–330

    Article  Google Scholar 

  • Mattheck C (1993) Design in der Natur. Rombach Wissenschaft

    Google Scholar 

  • McAuliffe JR, Scuderi LA, McFadden LD (2006) Tree-ring record of hillslope erosion and valley floor dynamics: Landscape responses to climate variation during the last 400yr in the Colorado Plateau, northeastern Arizona. Global Planet Change 50:184–201

    Article  Google Scholar 

  • McCarthy DP, Luckman BH (1993) Estimating ecesis for tree-ring dating of moraines – a comparative study from the Canadian Cordillera. Arct Alp Res 25:63–68

    Article  Google Scholar 

  • McCarthy DP, Luckman BH, Kelly PE (1991) Sampling height-age error correction for spruce seedlings in glacial forefields, Canadian Cordillera. Arct Alp Res 23:451–455

    Article  Google Scholar 

  • McKay SAB, Hunter WL, Godard KA, Wang SX, Martin DM, Bohlmann J, Plant AL (2003) Insect attack and wounding induce traumatic resin duct development and gene expression of (-)-pinene synthase in Sitka spruce. Plant Physiol 133:368–378

    Article  Google Scholar 

  • Meisling K, Sieh K (1980) Disturbance of trees by the 1857 Fort Tejon earthquake. J Geophys Res 85:3225–3238

    Article  Google Scholar 

  • Moya J, Corominas J, Pérez Arcas J (2010) Assessment of the rockfall frequency for hazard analysis at Solà d’Andorra (Eastern Pyrenees). In: Stoffel M, Bollschweiler M, Butler DR, Luckman BH (eds) Tree rings and natural hazards: A state-of-the-art. Springer, Berlin, Heidelberg, New York, this volume

    Google Scholar 

  • Nagy NE, Franceschi VR, Solheim H, Krekling T, Christiansen E (2000) Wound-induced traumatic resin duct development in stems of Norway spruce (Pinaceae): Anatomy and cytochemical traits. Am J Bot 87:302–313

    Article  Google Scholar 

  • Papadopoulos AM, Mertzanis A, Pantera A (2007) Dendrogeomorphological observations in a landslide on Tymfristos mountain in Central Greece. In: Stokes A, Spanos I, Norris JE, Cammeraat E (eds) Eco- and ground bio-engineering: The use of vegetation to improve slope stability. Springer, Berlin, Heidelberg, New York, pp. 223–230

    Chapter  Google Scholar 

  • Perret S, Stoffel M, Kienholz H (2006) Spatial and temporal rockfall activity in a forest stand in the Swiss Prealps – a dendrogeomorphological case study. Geomorphology 74:219–231

    Article  Google Scholar 

  • Phillips MA, Croteau RB (1999) Resin-based defences in conifers. Trends Plant Sci 4:184–190

    Article  Google Scholar 

  • Pierson TC (2007) Dating young geomorphic surfaces using age of colonizing Douglas fir in southwestern Washington and northwestern Oregon, USA. Earth Surf Process Land 32:811–831

    Article  Google Scholar 

  • Pilate G, Chabbert B, Cathala B, Yoshinaga A, Leple JC, Laurans F, Lapierre C, Ruel K (2004) Lignification and tension wood. C Biol 327:889–901

    Article  Google Scholar 

  • Rigling A, Bräker O, Schneiter G, Schweingruber F (2002) Intra-annual tree-ring parameters indicating differences in drought stress of Pinus sylvestris forests within the Erico-Pinion in the Valais (Switzerland). Plant Ecol 163:105–121

    Article  Google Scholar 

  • Rizzo DM, Harrington TC (1988) Root movement and root damage of red spruce and balsam fir on subalpine sites in the White Mountains, New Hampshire. Can J Forest Res 18(8):991–1001

    Article  Google Scholar 

  • Rodriguez J, Vos F, Below R, Guha-Sapir D (2009) Annual disaster statistical review 2008. The numbers and trends. Centre for Research on the Epidemiology of Disasters, Jacoffset Printers, Melin, Belgium, p 33

    Google Scholar 

  • Ruel JJ, Ayres MP, Lorio PL (1998) Loblolly pine responds to mechanical wounding with increased resin flow. Can J Forest Res 28:596–602

    Article  Google Scholar 

  • Sachs T (1991) Pattern formation in plant tissue. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Schneuwly DM, Stoffel M (2008a) Spatial analysis of rockfall activity, bounce heights and geomorphic changes over the last 50 years – A case study using dendrogeomorphology. Geomorphology 102:522–531

    Article  Google Scholar 

  • Schneuwly DM, Stoffel M (2008b) Tree-ring based reconstruction of the seasonal timing, major events and origin of rockfall on a case-study slope in the Swiss Alps. Nat Haz Earth Syst Sci 8:203–211

    Article  Google Scholar 

  • Schneuwly DM, Stoffel M, Bollschweiler M (2009) Formation and spread of callus tissue and tangential rows of resin ducts in Larix decidua and Picea abies following rockfall impacts. Tree Physiol 29:281–289

    Article  Google Scholar 

  • Schweingruber F (1983) Der Jahrring: Standort, Methodik, Zeit und Klima in der Dendrochronologie. Paul Haupt, Bern, Stuttgart, Wien

    Google Scholar 

  • Schweingruber FH (1996) Tree rings and environment. Dendroecology. Paul Haupt, Bern, Stuttgart, Wien

    Google Scholar 

  • Schweingruber F (2001) Dendroökologische Holzanatomie. Paul Haupt, Bern, Stuttgart, Wien

    Google Scholar 

  • Schweingruber F, Eckstein D, Serre-Bachet F, Bräker OU (1990) Identification, presentation and interpretation of event years and pointer years in dendrochronology. Dendrochronologia 8:9–39

    Google Scholar 

  • Shaban R (2009) Australia’s natural disasters: The 2009 fires and floods. Australas Emerg Nurse J 12:29

    Article  Google Scholar 

  • Sheppard P, Jacoby G (1989) Application of tree-ring analysis to paleoseismology: two case studies. Geology 17:226–229

    Article  Google Scholar 

  • Sheppard P, White D (1995) Tree-ring responses to the 1978 earthquake at Stephens Pass, northeastern California. Geology 23:109–112

    Article  Google Scholar 

  • Shigo AL (1984) Compartmentalization – A conceptual framework for understanding how trees grow and defend themselves. Ann Rev Phytopathol 22:189–214

    Article  Google Scholar 

  • Shroder JF (1978) Dendrogeomorphological analysis of mass movement on Table Cliffs Plateau, Utah. Quat Res 9:168–185

    Article  Google Scholar 

  • Sigafoos RH, Hendricks EL (1969) The time interval between stabilization of alpine glacial deposits and establishment of tree seedlings. US Geol Surv Prof Paper 650B:B89–B93

    Google Scholar 

  • Stoffel M (2008) Dating past geomorphic processes with tangential rows of traumatic resin ducts. Dendrochronologia 26:53–60

    Article  Google Scholar 

  • Stoffel M, Beniston M (2006) On the incidence of debris flows from the early Little Ice Age to a future greenhouse climate – A case study from the Swiss Alps. Geophys Res Lett 33:L16404

    Article  Google Scholar 

  • Stoffel M, Hitz OM (2008) Rockfall and snow avalanche impacts leave different anatomical signatures in tree rings of juvenile Larix decidua. Tree Physiol 28:1713–1720

    Google Scholar 

  • Stoffel M, Perret S (2006) Reconstructing past rockfall activity with tree rings: some methodological considerations. Dendrochronologia 24:1–15

    Article  Google Scholar 

  • Stoffel M, Lievre I, Conus D, Grichting MA, Raetzo H, Gärtner HW, Monbaron M (2005a) 400 years of debris-flow activity and triggering weather conditions: Ritigraben, Valais, Switzerland. Arct Antarc Alp Res 37:387–395

    Article  Google Scholar 

  • Stoffel M, Lievre I, Monbaron M, Perret S (2005b) Seasonal timing of rockfall activity on a forested slope at Taschgufer (Swiss Alps) – A dendrochronological approach. Z Geomorphol 49:89–106

    Google Scholar 

  • Stoffel M, Schneuwly D, Bollschweiler M, Lievre I, Delaloye R, Myint M, Monbaron M (2005c) Analyzing rockfall activity (1600–2002) in a protection forest – a case study using dendrogeomorphology. Geomorphology 68:224–241

    Article  Google Scholar 

  • Stoffel M, Conus D, Grichting MA, Lievre I, Maitre G (2008) Unraveling the patterns of late Holocene debris-flow activity on a cone in the Swiss Alps: Chronology, environment and implications for the future. Glob Planet Change 60:222–234

    Article  Google Scholar 

  • Stoffel M, Bollschweiler M (2008) Tree-ring analysis in natural hazards research – an overview. Nat Haz Earth Sys Sci 8:187–202

    Article  Google Scholar 

  • Stoffel M, Bollschweiler M (2009) What tree rings can tell about earth-surface processes. Teaching the principles of dendrogeomorphology. Geogr Compass 3:1017–1037

    Article  Google Scholar 

  • Stokes MA, Smiley TL (1968) An introduction to tree-ring dating. University of Chicago Press, Chicago

    Google Scholar 

  • Strunk H (1989) Dendrogeomorphology of debris flows. Dendrochronologia 7:15–25

    Google Scholar 

  • Strunk H (1991) Frequency distribution of debris flow in the Alps since the “Little Ice Age”. Z Geomorphol Suppl 83:71–81

    Google Scholar 

  • Strunk H (1995) Dendrogeomorphologische Methoden zur Ermittlung der Murfrequenz und Beispiele ihrer Anwendung. Roderer, Regensburg

    Google Scholar 

  • Strunk H (1997) Dating of geomorphological processes using dendrogeomorphological methods. Catena 31:137–151

    Article  Google Scholar 

  • Swetnam TR (1993) Fire history and climate change in Giant Sequoia groves. Science 262:885–889

    Article  Google Scholar 

  • SwissRe (2009) Natural catastrophes and man-made disasters in 2008: North America and Asia suffer heavy losses. Sigma 2(09):1–41

    Google Scholar 

  • Timell TE (1986) Compression wood in Gymnosperms. Springer, Berlin

    Google Scholar 

  • UNISDR (2009) United Nations International Strategy for Disaster Reduction. UNISDR Terminology on Disaster Risk Reduction. www.unisdr.org

  • Vaganov EA, Hughes MK, Shashkin AV (2006) Growth dynamics of conifer tree rings. Images of past and future environments. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Vittoz P, Stewart G, Duncan R (2001) Earthquake impacts in old-growth Nothofagus forests in New Zealand. J Veget Sci 12:417–426

    Article  Google Scholar 

  • Wells A, Duncan R, Stewart G (1998) Forest dynamics in Westland, New Zealand: the importance of large, infrequent earthquake-induced disturbance. J Ecol 89(6):1006–1018

    Article  Google Scholar 

  • Westing AH (1965) Formation and function of compression wood in gymnosperms II. Bot Rev 34:51–78

    Article  Google Scholar 

  • Wilson BF, Archer RR (1977) Reaction wood: Induction and mechanical action. Ann Rev Plant Physiol 28:23–43

    Article  Google Scholar 

  • Winter LE, Brubaker LB, Franklin JF, Miller EA, DeWitt DQ (2002) Initiation of an old-growth Douglas-fir stand in the Pacific Northwest: a reconstruction from tree-ring records. Can J Forest Res 32:1039–1056

    Article  Google Scholar 

  • Wisner B, Blaikie P, Cannon T, Davis I (2003) At risk: Natural hazards, people’s vulnerability and disasters, 2nd edn. Routledge, London

    Google Scholar 

  • Wolman MG, Miller JP (1960) Magnitude and frequency of forces in geomorphic processes. J Geol 68:54–74

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Stoffel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Stoffel, M., Bollschweiler, M., Butler, D.R., Luckman, B.H. (2010). Tree Rings and Natural Hazards: An Introduction. In: Stoffel, M., Bollschweiler, M., Butler, D., Luckman, B. (eds) Tree Rings and Natural Hazards. Advances in Global Change Research, vol 41. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8736-2_1

Download citation

Publish with us

Policies and ethics