Abstract
Trees colonizing Central Amazonian floodplains are subjected to extended periods of waterlogging and submersion surviving up to seven months of flooding per year. Flood is a consequence of changes in water level of ca. 10 m in the largest rivers of the region, and leads to a fast depletion of oxygen in the soil modifying the metabolism of the plants. Flooding tolerance varies between species and ecotypes as well as the biochemical traits and processes allowing the survival and adaptation of plant species. This results in a typical substitution of plant communities in these environments according to the depth of inundation. Amongst the developed metabolic adjustments and growth strategies and adaptations plants may show wood-ring formation, indicating annual growth reduction related to the inundation phase. The reduction of growth is preceded by stomatal closing, degradation of leaf chlorophyll, decrease of photosynthetic rates, carbohydrate translocation, and alteration of the hormonal balance. Floodplain trees develop as well protection mechanisms which can diminish damages caused by the long lasting annual hypoxia or even anoxia. Although the majority of woody plants can support periods of anoxia varying between a few hours to some days, in non-adapted species, irreversible damages can be caused leading to the death of the roots, when longer periods of flooding are imposed. These damages are attributed to the accumulation of toxic end products of the anaerobic metabolism, the loss of metabolic energy or the lack of respiration substrate. All and all the adaptations described at the biochemical level for temperate tree species inhabiting wetland are found in Amazonian floodplain trees; however, they are not enough to explain plant survival. This indicates the existence of novel mechanisms still to be found which together with the fate of the tree species inhabiting Amazonian floodplains in a changing climate are the main challenges faced by wetland scientists in the near future.
Keywords
- Tree Species
- Adventitious Root
- Floodplain Forest
- Terra Firme
- Anaerobic Pathway
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Aidar MPM, Martinez CA, Costa AC, Costa PMF, Dietrich SMC, Buckeridge MS (2002) Effect of atmospheric CO2 enrichment on the establishment of seedlings of jatobá, Hymenaea courbaril L. (Leguminosae, Caesalpinioideae) Biota Neotropica 2(1). http://www.biotaneotropica.org.br/v2n1/en/abstract?article+BN01602012002
Ainsworth EA, Davey PA, Bernacch CJ, Dermody OC, Heaton EA, Moore DJ, Morgan PB, Naidu SL, Yoora HS, Zhu XG, Curtins P, Long SP (2002) A meta-analysis of elevated [CO2] effects on soybean (Glycine max) physiology, growth and yield. Global Change Biology 8:695–709
Armstrong W, Drew MC (2002) Root growth and metabolism under oxygen deficiency. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half, 3rd edn. Marcel Dekker, New York, pp 729–761
Barrios E, Herrera R (1994) Nitrogen cycling in a Venezuelan tropical seasonally flooded forest: soil nitrogen mineralization and nitrification. J Trop Ecol 10:399–416
Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress. Ann Bot 90:179–194
Buckeridge MS, Mortari LC, Machado MR (2007) Respostas fisiológicas de plantas às mudanças climáticas: alterações no balanço de carbono nas plantas podem afetar o ecossistema? In: Rego GM, Negrelle RR, Morellato LPC (org.). Fenologia – Ferramenta pra a conservação e manejo de recursos vegetais arbóreos. Colombo, PR: Embrapa, pp 213–230
Crawford RMM (1978) Metabolic adaptations to anoxia. In: Hook DD, Crawford RMM (eds) Plant life in anaerobic environments. Ann Arbor Science, London, pp 119–136
Crawford RMM (1992) Oxygen availability as an ecological limit to plant distribution. Adv in Ecol Res 23:93–185
Crawford RMM, Braendle R (1996) Oxygen deprivation stress in a changing environment. J Experiment Bot 47(295):145–159
De Simone O, Haase K, Müller E, Junk WJ, Gonsior GA, Schmitt W (2002a) Impact of root morphology on metabolism and oxygen distribution in roots and rhizosphere from two Central Amazon floodplain tree species. Funct Plant Biol 29:1025–1035
Dennis ES, Dolferus R, Ellis M, Rahman M, Wu Y, Hoeren FU, Grover A, Ismond KP, Good AG, Peacock WJ (2000) Molecular strategies for improving waterlogging tolerance in plants. J Experiment Bot 51(342):89–97
Drew MC, He C, Morgan PW (2000) Programmed cell death and aerenchyma formation in roots. Trends Plant Sci 3(5):123–127
Ellis MH, Dennis ES, James W (1999) Arabdopsis root and shoots have different mechanisms for hipoxic stress tolerance. Plant Physiol 119(1):57–64
Fan L, Zheng S, Wang X (1997) Antisense suppression of phospholipase D retards abscisic acid- and ethylene-promoted senescence of postharvest Arabidopsis leaves. Plant Cell 9:2916–2919
Ferreira CS (2002) Germinação e adaptações metabólicas e morfo-anatômicas em plântulas de Himatanthus succuuba (Spruce) Wood., de ambientes de várzea e terra firme na Amazônia Central. Unpubl Master Thesis, Universidade do Amazonas (UA), Instituto Nacional de Pesquisas da Amazônia (INPA), p 95
Ferreira CS (2006) Aspectos morfo-anatômicos, bioquímicos e genéticos de de Himatanthus sucuuba, em ambiente de várzea e de terra firme da Bacia Amazônica. Ph.D. thesis, CAPES, INPA/UFAM, Manaus
Ferreira CS, Piedade MTF, Bonates LC (2006) Germinação de sementes e sobrevivência de plântulas de Himatanthus sucuuba (Spruce) Wood. em resposta ao alagamento, nas várzeas da Amazônia Central. Acta Amazonica 36:413–418
Ferreira CS, Piedade MTF, Junk WJ, Parolin P (2007) Floodplain and upland populations of Amazonian Himatanthus sucuuba: effects of flooding on germination, seedling growth and mortality. Environ Experiment Bot 60(3):477–483
Ferreira CS, Piedade MTF, Franco A, Gonçalves JFC, Junk WJ (2008) Adaptive strategies to tolerate prolonged flooding in seedlings of floodplain and upland populations of Himatanthus sucuuba, a Central Amazon tree. Aquat Bot 1:1–7
Ferreira CS, Figueira AVO, Gribel R, Wittmann F, Piedade MTF (2010) Genetic variability, divergence and speciation in trees of periodically flooded forests of the Amazon: a case study of Himatanthus sucuuba (SPRUCE) WOODSON. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New York
Ferreira LV (2000) Effect of flooding duration on species richness, floristic composition and forest structure in river margin habitats in Amazonian blackwater floodplain forests: implications for future design of protected areas. Biodivers Conserv 9:1–14
Fiedler S, Sommer M (2004) Water and redox conditions in wetland soils – their influence on pedogenic oxides and morphology. Soil Sci Soc Am 68:326–335
Furch K (2000) Chemistry and bioelement inventory of contrasting Amazonian forest soils. In: Junk WJ, Ohly JJ, Piedade MTF, Soares MGM (eds) The Central Amazon floodplain: actual use and options for a sustainable management. Backhuys, Leiden, pp 109–128
Gaston S, Zabalza A, González EM, Arrese-Igor C, Aparicio-Tejo PM, Royuela M (2002) Imazethapyr, an inhibitor of the branched-chain amino acid biosynthesis, induces aerobic fermentation in pea plants. Physiol Plant 114:524–532
Gill CJ (1970) The flooding tolerance of woody species – a review. Forest Abstr 31(4):671–688
Good AG, Crosby WL (1989) Anaerobic Induction of Alanine Aminotransferase in Barley Root Tissue. Plant Physiol 90:1305–1309
Graffmann KC, Grosse W, Junk WJ, Parolin P (2008) Pressurized gas transport in Amazonian floodplain trees. Environ Experiment Bot 62:371–375
Gut A, Scheibe M, Rottenberger S, Rummel U, Welling M, Ammann A, Kirkman G, Kuhn U, Meixner FX, Kesselmeier J, Lehmann BE, Schmidt W, Miller E, Piedade MTF (2002) Exchange fluxes of the NO2 and O3 at soil and leaf surfaces in an Amazonian rain forest. J Geophys Res 107(20):1–15
Haase K, De Simone O, Junk WJ, Schmidt W (2003) Internal oxygen transport in cuttings from flood-adapted várzea tree species. Tree Phys 23:1069–1076
Harborne JB (1988) Introduction to ecological biochemistry, 3rd edn. London, Academic Press, p 356
Holzinger R, Sandoval-Soto L, Rottenberger S, Crutzen PJ, Kesselmeier J (2000) Emissions of volatile organic compounds from Quercus ilex L. measured by Proton transfer reaction mass spectrometry under different environmental conditions. J Geophys Res -Atmos 105(D16):20/573–579
Hormaetxe K, Esteban R, Becerril JM, García-Plazaola JI (2005) Dynamics of the α-tocopherol pool as affected by external (environmental) and internal (leaf age) factors in Buxus sempervirens leaves. Physiologia Plantarum 125:333–344
Joly CA, Crawford RMM (1982) Variation in tolerance and metabolic responses to flooding in some tropical trees. J Experiment Bot 33:799–809
Junk WJ (1989) Flood tolerance and tree distribution in central Amazonian floodplains. In: Holm-Nielsen LB, Nielsen IC, Balslev H (eds) Tropical forests: botanical dynamics, speciation and diversity. Academic Press, New York, pp 47–64
Junk WJ (1993) Wetlands of tropical South America. In: Whigham D, Hejny S, Dykyjova D (eds) Wetlands of the world. Junk Publications, Dordrecht, pp 679–739
Junk WJ, Barley PB, Sparks RE (1989) The flood-pulse concept in river-floodplain systems. Can Spec Publ Fish Aquat Sci 106:110–127
Kern J, Darwich A (1997) Nitrogen turnover in the várzea. In: Junk WJ (ed) The Central Amazon floodplains. Ecology of a pulsing system. Springer, Berlin/Heidelberg/New York, pp 119–135
Kern J, Kreibich H, Koschorreck M, Darwich A (2010) Nitrogen balance of a floodplain forest of the Amazon River: the role of Nitrogen fixation. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New York
Kesselmeier J (2001) Exchange of short-chain oxygenated volatile organic compounds (VOCs) between plants and the atmosphere: a compilation of field and laboratory studies. J Atmosph Chemis 39(3):219–233
Kesselmeier J, Bode K, Hofmann U, Müller H, Schäfer L, Wolf A, Ciccioli P, Brancaleoni E, Cecinato A, Frattoni M, Foster P, Ferrari C, Jacob V, Fugit JL, Dutaur L, Simon V, Torres L (1997) Emission of short chained organic acids, aldehydes and monoterpenes from Quercus ilex L. and Pinus pinea L. in relation to physiological activities, carbon budget and emission algorithms. Atmos Environ 31(SI):119–134
Kesselmeier J, Staudt M (1999) Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J Atmos Chem 33:23–88
Kimmerer TW, Kozlowski TT (1982) Ethylene, ethane, acetaldehyde, and ethanol production by plants under stress. Plant Physiol 69:840–847
Kimmerer TW, MacDonald RC (1987) Acetaldehyde and ethanol biosynthesis in leaves of plants. Plant Physiol 84:1204–1209
Klok EJ, Wilson IW, Wilson D, Chapman SC, Ewing RM, Somerville SC, Peacock WJ, Doferus R, Dennis ES (2002) Expression profile analysis of the low-oxygen response in Arabidopsis root cultures. Plant Cell 14:2481–2494
Kotzias D, Konidari C, Sparta C (1997) Volatile carbonyl compounds of biogenic origin – emission and concentration in the atmosphere. In: Helas G, Slanina J, Steinbrecher R (eds) Biogenic volatile organic Carbon compounds in the atmosphere. SPB Academic Publishing, Amsterdam, pp 67–78
Kozlowski TT (1984a) Plant response to flooding of soil. BioScience 34(3):162–167
Kozlowski TT (1997) Responses of woody plants to flooding and salinity. Tree Physiol Monograph 1:1–29
Kreuzwieser J, Scheerer U, Rennenberg H (1999) Metabolic origin of acetaldehyde emitted by poplar (Populus tremula x P-alba) trees. J Exp Bot 50(335):757–765
Lobo PC, Joly CA (1998) Tolerance to hypoxia and anoxia in Neotropical tree species. Oecologia Brasiliensis 4:137–156
Long SP, Ainsworth EA, Leakey ADB, Nosberger J, Ort D (2006) Food for thought: lower-than-expected crop yield simulation with rising CO2 concentrations. Science 312:1918–1921
Martius C (1997) The termites. In: Junk WJ (ed) The Central Amazon floodplain: ecology of a pulsing system. Ecol Stud 126:362–371. Springer, Berlin/Heidelberg/New York
Medri ME, Ferreira ACS, Kolb RM, Bianchini E, Pimenta JA, Davanso-Fabro VM, Medri C (2007) Alterações morfoanatômicas em plantas de Lithraea molleoides (Vell.) Engl. submetidas ao alagamento. Acta Scientiarum (29):15–22
Megonigal JP, Vann CD, Wolf AA (2005) Flooding constraints on tree (Taxodium distichum) and herb growth responses to elevated CO2. Wetlands 25:430–438
Melack JM, Hess LL, Gastil M, Forsberg BR, Hamilton SK, Lima IBT, Novo EMLM (2004) Regionalization of methane emissions in the Amazon Basin with microwave remote sensing. Global Change Biol 10(5):530–544
Menezes Neto MA (1994) Influência da disponibilidade de oxigênio sobre a germinação, crescimento, e atividade das enzimas álcooldesidrogenase e lactato desidrogenase em Açaí (Euterpe oleracea Mart.). Dissertação de Mestrado, Escola Superior de Agricultura de Lavras, Minas Gerais, Brasil, p 50
Mitsch WJ, Gosselink JG (2000) Wetlands. Wiley, New York
Mommer L, Visser EJW (2005) Underwater photosynthesis in flooded terrestrial plants: a matter of leaf plasticity. Annal Bot 96:581–589
Oliveira Wittmann A (2007) Conteúdo de tocromanóis em espécies arbóreas de várzea da Amazônia Central sob condições controladas. Tese INPA/UFAM, p 126
Parolin P (1998) Floristic composition and structure of two stands of Senna reticulata differing in age. Amazoniana 15(1/2):113–128
Parolin P (2001a) Morphological and physiological adjustments to waterlogging and drought in seedlings of Amazonian floodplain trees. Oecologia 128:326–335
Parolin P (2009) Submerged in darkness: adaptations to prolonged submergence by woody species of the Amazonian floodplains. Annal Bot Flood Spec Issue 103:359–376
Parolin P, Armbrüster N, Junk WJ (2002a) Seasonal changes of leaf nitrogen content in trees of Amazonian floodplains. Acta Amazonica 32(2):231–240
Parolin P, Adis J, Rodrigues WA, Amaral I, Piedade MTF (2004a) Floristic study of an igapó floodplain forest in Central Amazonia, Brazil (Tarumã-Mirim, Rio Negro). Amazoniana 18(1/2):29–47
Parolin P, Lucas C, Piedade MTF, Wittmann F (2010) Drought responses of extremely flood tolerant trees of Amazonian floodplains. Annal Bot 105(1):129–139
Phillips OL, Lewis SL, Baker TR, Chao K-J, Higuchi N (2008) The changing Amazon forest. Philos T Roy Soc B 363:1819–1827
Piedade MTF, Worbes M, Junk WJ (2001) Geo-ecological controls on elemental fluxes in communities of higher plants in Amazonian floodplains. In: McClain ME, Victoria RL, Richey JE (eds) The biogeochemistry of the Amazon basin. Oxford University Press, New York, p 209–234
Ponnamperuma FN (1984) Effects of flooding on soils. In: Kozlowski TT (ed) Flooding and plant growth. Academic Press, London, pp 9–45
Rottenberger S (2003) Exchange of oxygenated volatile organic compounds between Amazonian and European vegetation and atmosphere. Ph.D. thesis, University of Mainz
Rottenberger S, Kleiss B, Kuhn U, Wolf A, Piedade MTF, Junk J, Kesselmeier J (2008) The effect of flooding on the exchange of the volatile C2-compounds ethanol, acetaldehyde and acetic acid between leaves of Amazonian floodplain tree species and the atmosphere. Biogeosciences (Katlenburg-Lindau) (5):1085–1100
Santiago EF, Paoli AS (2007) Morphological responses in Guibourtia hymenifolia (Moric.) J. Leonard (Fabaceae) and Genipa americana L. (Rubiaceae) to nutrient deficit and flooding stress. Revista Brasileira de Botanica 30(1)
Schlüter UB, Furch B (1992) Morphologische, anatomische und physiologische Untersuchungen zur Überflutungstoleranz des Baumes Macrolobium acaciaefolium, charakteristisch für die Weißund Schwarzwasser-Überschwemmungswälder bei Manaus, Amazonas. Amazoniana 12:51–69
Schlüter UB, Furch B, Joly CA (1993) Physiological and anatomical adaptations by young Astrocaryum jauari Mart (Arecaceae) in periodically inundated biotopes of Central Amazonia. Biotropica 25(4):384–396
Singh HB, Kanakidou M, Crutzen PJ, Jacob DJ (1995) High concentrations and photochemical fate of oxygenated hydrocarbons in the global troposphere. Nature 378:50–54
Taiz L, Zeiger E (2004) Fisiologia vegetal. Trad. Eliane Romanato Santarém 3a. ed.– Porto Alegre. Artmed. p 719
Talbot RW, Andreae MO, Berresheim H, Jacob DJ, Beecher KM (1990) Sources and sinks of formic, acetic, and pyruvic acids over central Amazonia.2. Wet Season. J Geophys Res Atmos 95:16799–16811
Thompson AM (1992) The oxidizing capacity of the earth’s atmosphere – probable past and future changes. Science 256:1157–1165
Visser EJW, Voesenek LACJ (2004) Acclimation to soil flooding – sensing and signal-tranduction. Plant Soil 254:197–214
Voesenek LACJ, Banga M, Rijnders JGHM, Visser EJW, Blom CWPM (1996) Hormone sensitivity and plant adaptations to flooding. Folia Geobotanica 31(1):47–56
Waldhoff D, Furch B, Junk WJ (2002) Fluorescence parameters, chlorophyll concentration, and anatomical features as indicators for flood adaptation of an abundant tree species in Central Amazonia: Symmeria paniculata. Environ Experimen Bot 48(3):225–235
Wand SJE, Midgley GF, Jones MH, Curtis PS (1999) Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: a met analytic test for current theories and perceptions. Global Change Biol 5:723–741
Wingler A, von Schaewen A, Leegood RC, Lea PJ, Quick WP (1998) Regulation of senescence by citokinin, sugars and light. Plant Physiol 116:329–335
Wittmann F (2001) Artenverbreitung und Bestandesstruktur in amazonischen Várzea-Wäldern und Möglichkeiten der Erfassung von Waldtypen mittels fernerkundlichen Methoden. Ph.D. thesis, Universität Mannheim, Fachbereich Geographie
Wittmann F, Anhuf D, Junk WJ (2002b) Tree species distribution and community structure of central Amazonian várzea forests by remote-sensing techniques. J Trop Ecol 18: 805–820
Worbes M (1986) Lebensbedingungen und Holzwachstum in zentralamazonischen Überschwemmungswäldern. Erich Goltze, Göttingen. Scripta Geobotanica 17:1–112
Worbes M (1997) The forest ecosystem of the floodplains. In: Junk WJ (ed) The central Amazon floodplain: ecology of a pulsating system. Ecolog Stud 126:223–265. Springer, Berlin/Heidelberg/New York
Acknowledgments
This study was supported by FAPEAM/CNPq – PRONEX “Tipologias Alagáveis”, by the INPA/Max-Planck Project and the SHIFT Program ENV-29 Project (CNPq-BMBF). The Instituto Nacional de Pesquisas da Amazônia provided logistic support. We acknowledge Celso Rabelo Costa and Valdeney Azevedo for technical assistance.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer Science+Business Media B.V.
About this chapter
Cite this chapter
Piedade, M.T.F., Ferreira, C.S., Wittmann, A.d.O., Buckeridge, M., Parolin, P. (2010). Biochemistry of Amazonian Floodplain Trees. In: Junk, W., Piedade, M., Wittmann, F., Schöngart, J., Parolin, P. (eds) Amazonian Floodplain Forests. Ecological Studies, vol 210. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8725-6_6
Download citation
DOI: https://doi.org/10.1007/978-90-481-8725-6_6
Published:
Publisher Name: Springer, Dordrecht
Print ISBN: 978-90-481-8724-9
Online ISBN: 978-90-481-8725-6
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)