Tree Phenology in Amazonian Floodplain Forests

Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 210)

Abstract

The flood pulse operates as a regulator for the timing of phenological events, the phenology of Amazonian floodplain tree species is linked to the seasonal water-level changes. Many tree species shed and resprout leaves during the high-water season. Flowering and fruiting reach their peaks during the aquatic phase. However, with the present knowledge, there is still a discussion about the possible triggers which are responsible for these phenological events. Long-term studies of several years are lacking, and the results presented by various authors are not directly comparable. Inter- and intraspecific variations at all levels along the flood gradient, and between várzea and igapó, are frequent. Many Amazonian floodplain tree species occur in non-flooded ecosystems where phenology is triggered by precipitation, drought, solar irradiance, and temperature. It is possible that these factors act also in the floodplains, but the extent is not clear.

Keywords

Deciduous Species Evergreen Species Flood Pulse Phenological Event Terra Firme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adis J, Furch K, Irmler U (1979) Litter production of a central Amazonian blackwater inundation forest. Tropical Ecology 20:236–245Google Scholar
  2. Aide TM (1993) Patterns of leaf development and herbivory in a tropical understory community. Ecology 74:455–466CrossRefGoogle Scholar
  3. Alvim P de T, Alvim R (1978) Relation of climate to growth periodicity in tropical trees. In: Tomlinson PB, Zimmermann MH (eds) Tropical trees as living systems. Cambridge University Press, Cambridge, pp 445–464Google Scholar
  4. Appanah S (1985) General flowering in the climax rain forests of south-east Asia. J Trop Ecol 1:225–240CrossRefGoogle Scholar
  5. Armbrüster N (1999) Auswirkungen von Überflutung auf Photosynthese, Blattphysiologie und Phänologie zweier Baumarten des zentralamazonischen Überschwemmungswaldes. Diplomarbeit Uni Oldenburg, p 88Google Scholar
  6. Ashton PS, Givnish TJ, Appanah S (1988) Staggered flowering in the Dipterocarpaceae: new insights into floral induction and the evolution of mast fruiting in the aseasonal tropics. Am Naturalist 231:44–66Google Scholar
  7. Augspurger CK (1981) Reproductive synchrony of a tropical shrub: experimental studies on effects of pollinator and seed predators on Hybanthus prunifolius (Violaceae). Ecology 62:775–788CrossRefGoogle Scholar
  8. Ayres JM (1993) As matas de várzea do Mamirauá. In: Sociedade civil Mamirauá (ed) Estudos de Mamirauá, vol.1. Sociedade civil Mamirauá, Mamirauá, pp 1-123Google Scholar
  9. Blom CWPM, Voesenek LACJ (1996) Flooding: the survival strategies of plants. Tree 11(7):290–295PubMedGoogle Scholar
  10. Borchert R (1991) Growth periodicity and dormancy. In: Raghavendra AS (ed) Physiology of trees. Wiley, New York, pp 21–245Google Scholar
  11. Borchert R (1994a) Soil and stem water storage determine phenology and distribution of tropical dry forest trees. Ecology 75:1437–1449CrossRefGoogle Scholar
  12. Borchert R (1994b) Water status and development of tropical trees during seasonal drought. Trees 8:115–125CrossRefGoogle Scholar
  13. Borchert R, Rivera G (2001) Photoperiodic control of seasonal development and dormancy in tropical stem-succulent trees. Tree Physiol 21:201–212PubMedCrossRefGoogle Scholar
  14. Bullock SH, Solís-Magallanes JA (1990) Phenology of canopy trees of a tropical deciduous forest in México. Biotropica 22:22–35CrossRefGoogle Scholar
  15. Coley PD, Barone JA (1996) Herbivory and plant defenses in tropical forests. Ann Rev Ecol System 27:305–335CrossRefGoogle Scholar
  16. De Simone O, Haase K, Müller E, Junk WJ, Hartmann K, Schreiber L, Schmidt W (2003a) Central amazon floodplain forests: root adaptations to prolonged flooding. Russ J Plant Physiol 50:848–855CrossRefGoogle Scholar
  17. De Simone O, Junk WJ, Schmidt W (2003b) Central Amazon floodplain forests: root adaptations to prolonged flooding. Russ J Plant Physiol 50(6):848–855CrossRefGoogle Scholar
  18. Ferreira LV (1991) O efeito do periodo de inundação na zonação de comunidades, fenologia e regeneração em uma floresta de igapó na Amazonia Central. Master Thesis, INPA, Manaus, p 161Google Scholar
  19. Ferreira LV (1998) Intraspecific variation in phenology in relation to flooding duration in Eschweilera parviflora (Lecythidaceae) in central Amazonian floodplain forest. An Acad Bras Ci 70:1–4Google Scholar
  20. Franken M, Irmler U, Klinge H (1979) Litterfall in inundation, riverine and terra firme forests of Central Amazonia. Trop Ecol 20(2):225–235Google Scholar
  21. Frankie GW, Baker HG, Opler PA (1974) Comparative phenological studies of trees in tropical wet and dry forests in the lowlands of Costa Rica. J Ecol 62:881–899CrossRefGoogle Scholar
  22. Gentry AH (1974) Flowering phenology and diversity in tropical Bignoniaceae. Biotropica 6:64–68CrossRefGoogle Scholar
  23. Gessner F (1968) Zur ökologischen Problematik der Überschwemmungswälder des Amazonas. Int Rev Ges Hydrobiol 53(4):525–547CrossRefGoogle Scholar
  24. Gill CJ (1970) The flooding tolerance of woody species – a review. Forest Abstr 31(4):671–688Google Scholar
  25. Goulding M (1983) The role of fishes in seed dispersal and plant distribution in Amazonian floodplain ecosystems. Sonderbd Naturwiss Ver Hamburg 7:271–283Google Scholar
  26. Gribel R, Gibbs PE, Queiróz AL (1999) Flowering phenology and pollination biology of Ceiba pentandra in Central Amazonia. J Trop Ecol 15:247–263CrossRefGoogle Scholar
  27. Gribel R, Hay JD (1993) Pollination ecology of Caryocar brasiliense (Caryocaraceae) in Central Brazil cerrado vegetation. J Trop Ecol 9:199–211CrossRefGoogle Scholar
  28. Haugaasen T, Peres CA (2005) Tree phenology in adjacent Amazonian flooded and unflooded forests. Biotropica 37(4):620–630CrossRefGoogle Scholar
  29. Janzen DH (1967) Synchronization of sexual reproduction of trees within the dry season in Central America. Evolution 21:620–637CrossRefGoogle Scholar
  30. Junk WJ (1989) Flood tolerance and tree distribution in central Amazonian floodplains. In: Holm-Nielsen LB, Nielsen IC, Balslev H (eds) Tropical forests: botanical dynamics, speciation and diversity. Academic Press, New York, pp 47–64Google Scholar
  31. Junk WJ, Barley PB, Sparks RE (1989) The flood-pulse concept in river-floodplain systems. Can Spec Publ Fish Aquat Sci 106:110–127Google Scholar
  32. Kahn F, Henderson A (1999) An overview of the palms of the várzea in the Amazon region. In: Padoch C, Ayres M, Pinedo-Vasquez M, Henderson A (eds) Várzea: diversity, development, and conservation of Amazonia’s whitewater floodplains. New York Botanical Garden Press, New York, pp 187–193Google Scholar
  33. Klinge H, Furch K, Harms E, Revilla J (1983) Foliar nutrient levels of native tree species from central Amazonia. 1 Inundation forests. Amazoniana 8:19–45Google Scholar
  34. Kochmer JP, Handel SN (1986) Constraints and competition in the evolution of flowering phenology. Ecol Monograph 56:303–325CrossRefGoogle Scholar
  35. Kozlowski TT (1984a) Plant response to flooding of soil. BioScience 34(3):162–167CrossRefGoogle Scholar
  36. Kozlowski TT (1984b) Responses of woody plants to flooding. Flooding and plant growth. Academic Press, Orlando, FL, pp 129–163Google Scholar
  37. Kubitzki K, Ziburski A (1994) Seed dispersal in floodplain forest of Amazonia. Biotropica 26(1):30–43CrossRefGoogle Scholar
  38. Leopold AC (1951) Photoperiodism in plants. Quarterly Rev Biol 26:247–263CrossRefGoogle Scholar
  39. Lobo JA, Quesada M, Stoner KE, Fuchs EJ, Herrerias-Diego Y, Rojas J, Saborio G (2003) Factors affecting phenological patterns of bombacaceous trees in seasonal forests in Costa Rica and Mexico. Am J Bot 90:1054–1063PubMedCrossRefGoogle Scholar
  40. Maia LA (1997) Influência do pulso de inundação na fisiologia, fenologia e produçao de frutos de Hevea spruceana (Euphorbiaceae) e Eschweilera tenuifolia (Lecythidaceae), em área inundável de igapó da Amazônia central. Unpublished Ph.D. Thesis, INPA/FUA Manaus, p 186Google Scholar
  41. Marquis RJ (1988) Phenological variation in the neotropical understory shrub Piper arieianum: causes and consequences. Ecology 69:1552–1565CrossRefGoogle Scholar
  42. Medina E (1983) Adaptations of tropical trees to moisture stress. In: Golley FB (ed) Ecosystems of the world: tropical rain forest ecosystems. Elsevier Scientific Publishing Company, Amsterdam/Oxford/New York, pp 225–237Google Scholar
  43. Meyer U (1991) Feinwurzelsysteme und Mykorrhizatypen als Anpassungsmechanismen in zentralamazonischen Überschwemmungswäldern- Igapó and Várzea. Ph.D. thesis, University of Hohenheim, GermanyGoogle Scholar
  44. Moegenburg SM (2002) Spatial and temporal variation in hydrochory in Amazonian floodplain forest. Biotropica 34:606–612Google Scholar
  45. Murali K, Sukumar SR (1994) Reproductive phenology of a tropical dry forest in Mudumalai, southern India. J Ecol 82:759–767CrossRefGoogle Scholar
  46. Murray K, Feinsinger GP, Busby HW, Linhart YB, Beach JH, Kinsman S (1987) Evaluation of character displacement among plants in two tropical pollination guilds. Ecology 68:1283–1293CrossRefGoogle Scholar
  47. Nebel G, Dragsted J, Salazar Vega A (2001a) Litter fall, biomass and net primary production in flood plain forests in the Peruvian Amazon. Forest Ecol Manag 150:93–102CrossRefGoogle Scholar
  48. Nebel G, Dragsted J, Simonsen TR, Vanclay JK (2001b) The Amazon flood plain forest tree Maquira coriacea (Karsten) CC Berg: aspects of ecology and management. Forest Ecol Manage 150:103–113CrossRefGoogle Scholar
  49. Oliveira AC (1998) Aspectos da dinâmica populacional de Salix martiana Leyb (Salicaceae), em áreas de várzea da Amazônia Central. Master Thesis INPA/FUA, pp 83Google Scholar
  50. Opler PA, Frankie GW, Baker HG (1976) Rainfall as a factor in the release, timing, and synchronization of anthesis by tropical trees and shrubs. J Biogeogr 3:231–236CrossRefGoogle Scholar
  51. Parolin P (1997) Auswirkungen periodischer Vernässung und Überflutung auf Phänologie, Photosynthese und Blattphysiologie von Baumarten unterschiedlicher Wachstumsstrategie in zentralamazonischen Überschwemmungsgebieten. Unpublished Ph.D. thesis, University of Hamburg, p 156Google Scholar
  52. Parolin P (1998) Floristic composition and structure of two stands of Senna reticulata differing in age. Amazoniana 15(1/2):113–128Google Scholar
  53. Parolin P (2001b) Phenology and photosynthesis of six tree species in Central Amazonian floodplains. In: Palo M, Uusivuori J, Mery G (eds) World forests, markets and policies. World forests vol III. Kluwer, Dordrecht/London/Boston, pp 304–305Google Scholar
  54. Piedade MTF (1985) Ecologia e biologia reprodutiva de Astrocaryum jauari Mart. (Palmae) como exemplo de populaçao adaptada as áreas inundáveis do rio Negro. Unpublished Master thesis INPA, ManausGoogle Scholar
  55. Prance GT (1979) Notes on the vegetation of Amazonia. 3. The terminology of Amazonian forest types subject to inundation. Brittonia 31:26–38CrossRefGoogle Scholar
  56. Queiroz HL (1995) Preguiças e Guaribas: os Mamíferos Folívoros Arborícolas doMamirauá. MCT/CNPq, Sociedade Civíl Mamirauá, BrasíliaGoogle Scholar
  57. Reich PB, Borchert R (1982) Phenology and ecophysiology of the tropical tree, Tabebuia neochrysantha (Bignoniaceae). Ecology 63(2):294–299CrossRefGoogle Scholar
  58. Reich PB, Borchert R (1984) Water stress and tree phenology in a tropical dry forest in the lowlands of Costa Rica. J Ecol 72:61–74CrossRefGoogle Scholar
  59. Revilla JD (1981) Aspectos Florísticos e Fitossociológicos da Floresta Inundável (igapó). Praia Grande, Tio Negro, Amazonas. Master thesis, Instituto Nacional de Pesquisas da Amazônia, ManausGoogle Scholar
  60. Revilla JDC (1991) Aspéctos florísticos e estruturais da floresta inundável (várzea) do baixo Solimões, Amazonas, Brasil. Doctoral Thesis, INPA, Manaus, pp 151Google Scholar
  61. Rivera G, Elliott S, Caldas LS, Nicolossi G, Coradin VTR, Borchert R (2002) Increasing day-length induces spring flushing of tropical dry forest trees in the absence of rain. Trees 16:445–456CrossRefGoogle Scholar
  62. Robertson C (1895) The philosophy of flower seasons, and the phenological relations of the entomophilous flora and the anthophilous insect fauna. Am Nat 29:97–117CrossRefGoogle Scholar
  63. Sakai S, Momose K, Yumoto T, Nagamitsu T, Nagamasu H, Hamid AA, Nakasiiizuka T (1999) Plant reproductive phenology over four years including an episode of general flowering in a lowland dipterocarp forest, Sarwak, Malaysia. Am J Bot 86:1414–1436PubMedCrossRefGoogle Scholar
  64. Schlüter U-B (1989) Morphologische, anatomische und physiologische Untersuchungen zur Überflutungstoleranz zweier charakteristischer Baumarten (Astrocaryum jauari und Macrolobium acaciaefolium) des Weiss- und Schwarz-wasserüberschwemmungswaldes bei Manaus.- ein Beitrag zur Ökosystemanalyse von Várzea und Igapó Zentralamazoniens. Ph.D. Thesis, University of Kiel, GermanyGoogle Scholar
  65. Schlüter UB, Furch B (1992) Morphologische, anatomische und physiologische Untersuchungen zur Überflutungstoleranz des Baumes Macrolobium acaciaefolium, charakteristisch für die Weißund Schwarzwasser-Überschwemmungswälder bei Manaus, Amazonas. Amazoniana 12:51–69Google Scholar
  66. Schlüter UB, Furch B, Joly CA (1993) Physiological and anatomical adaptations by young Astrocaryum jauari Mart (Arecaceae) in periodically inundated biotopes of Central Amazonia. Biotropica 25(4):384–396CrossRefGoogle Scholar
  67. Schöngart J, Piedade MTF, Ludwigshausen S, Horna V, Worbes M (2002) Phenology and stem-growth periodicity of tree species in Amazonian floodplain forests. J Trop Ecol 18:581–597CrossRefGoogle Scholar
  68. Schöngart J, Wittmann F, Worbes M (this volume b) Biomass and NPP of Central Amazonian floodplain forests. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  69. Seghieri J, Floret C, Pontanier R (1995) Plant phenology in relation to water availability: herbaceous and woody species in the savannas of northern Cameroon. J Trop Ecol 11:237–254CrossRefGoogle Scholar
  70. Snow DW (1965) A possible selective factor in the evolution of fruiting seasons in tropical forest. Oikos 15:274–281CrossRefGoogle Scholar
  71. Stiles FG (1975) Ecology, flowering phenology, and hummingbird pollination of some Costa Rican Heliconia species. Ecology 56:285–301CrossRefGoogle Scholar
  72. Stiles FG (1977) Coadapted competitors: the flowering seasons of hummingbird-pollinated plants in a tropical forest. Science 198:1170–1178CrossRefGoogle Scholar
  73. Tallak Nilsen E, Muller WH (1981) Phenology of the drought-deciduous shrub Lotus scoparius: climatic controls and adaptive significance. Ecolog Monograph 51:323–341CrossRefGoogle Scholar
  74. van Schaik CP (1986) Phenological changes in a Sumatran rain forest. J Trop Ecol 2:327–347CrossRefGoogle Scholar
  75. van Schaik CP, Terborgh JW, Wright SJ (1993) The phenology of tropical forests: adaptive significance and consequences for primary consumers. Ann Rev Ecol System 24:353–377CrossRefGoogle Scholar
  76. Waldhoff D, Furch B (2002) Leaf morphology and anatomy in eleven tree species from Central Amazonian floodplains (Brazil). Amazoniana 17:79–94Google Scholar
  77. Williams-Linera G (1997) Phenology of deciduous and broad leaf evergreen tree species in a Mexican tropical lower montane forest. Global Ecol Biogeogr Lett 6:115–127CrossRefGoogle Scholar
  78. Wittmann F (1997) Die Várzea-Wälder Zentralamazoniens – Phänologische Untersuchungen ausgewählter Baumarten zur Reaktion auf den annuellen Flutungsstreß. Master thesis, Geographisches Institut Universität Mannheim, p 89Google Scholar
  79. Wittmann F, Anhuf D, Junk WJ (2002a) Detection of different forest types in Central Amazonian Várzea by remote sensing techniques – preliminary results. In: Lieberei R, Bianchi H-K, Boehm V, Reisdorff C (eds) Neotropical ecosystems. Proceedings of the German-Brazilian Workshop, Hamburg 2000, GKSS-Geesthacht, Germany, pp 607–661Google Scholar
  80. Wittmann F, Anhuf D, Junk WJ (2002b) Tree species distribution and community structure of central Amazonian várzea forests by remote-sensing techniques. J Trop Ecol 18:805–820CrossRefGoogle Scholar
  81. Wittmann F, Parolin P (1999) Phenology of six tree species from central Amazonian várzea. Ecotropica 5(1):51–57Google Scholar
  82. Wittmann F, Schöngart J, Junk WJ (this volume) Phytogeography, species diversity, community structure and dynamics of central Amazonian floodplain forests. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  83. Worbes M (1983) Vegetationskundliche Untersuchungen zweier Überschwemmungswälder in Zentralamazonien – vorläufige Ergebnisse. Amazoniana 8(1):47–66Google Scholar
  84. Worbes M (1986) Lebensbedingungen und Holzwachstum in zentralamazonischen Überschwemmungswäldern. Erich Goltze, Göttingen. Scripta Geobotanica 17:1–112Google Scholar
  85. Worbes M (1992) Occurrence of seasonal climate and tree-ring research in the tropics. Lundqua Report 34:338–342Google Scholar
  86. Worbes M (1996) Rhythmisches Wachstum und anatomisch-morphologische Anpassungen an Lebensstrategien von Bäumen in zentralamazonischen Überschwemmungswäldern. Mitt Dtsch Dendrol Ges 82:155–172Google Scholar
  87. Worbes M (1997) The forest ecosystem of the floodplains. In: Junk WJ (ed) The central Amazon floodplain: ecology of a pulsating system. Ecolog Stud 126:223–265. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  88. Worbes M (1999) Annual growth rings, rainfall-dependent growth and long-term growth patterns of tropical trees from the Caparo Forest Reserve in Venezuela. J Ecol 87:391–403CrossRefGoogle Scholar
  89. Worbes M, Fichtler E (this volume) Wood anatomy and tree-ring structure and their importance for tropical dendrochronology. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  90. Wright SJ (1991) Seasonal drought and the phenology of understory shrubs in a tropical moist forest. Ecology 72:1643–1657CrossRefGoogle Scholar
  91. Wright SJ, Calderón O (1995) Phylogenetic patterns among tropical flowering phenologies. J Ecol 83:937–948CrossRefGoogle Scholar
  92. Wright SJ, Cornejo FH (1990) Seasonal drought and leaf fall in a tropical forest. Ecology 71:1165–1175CrossRefGoogle Scholar
  93. Wright SJ, van Schaik CP (1994) Light and the phenology of tropical trees. Am Nat 143:192–199CrossRefGoogle Scholar
  94. Ziburski A (1990) Ausbreitungs- und Reproduktionsbiologie einiger Baumarten der amazonischen Überschwemmungswälder. Unpublished Ph.D. thesis, University HamburgGoogle Scholar
  95. Ziburski A (1991) Dissemination, Keimung und Etablierung einiger Baumarten der Überschwemmungswälder Amazoniens. In: Rauh W (ed) Tropische und subtropische Pflanzenwelt. Akademie der Wissenschaften und der Literatur 77:1–96Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Flottbek Systematik der PflanzenUniversity of Hamburg, Biozentrum KleinHamburgGermany
  2. 2.Biogeochemistry DepartmentMax Planck Institute for ChemistryMainzGermany

Personalised recommendations