Advertisement

Nitrogen Balance of a Floodplain Forest of the Amazon River: The Role of Nitrogen Fixation

  • Jürgen Kern
  • Heidi Kreibich
  • Matthias Koschorreck
  • Assad Darwich
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 210)

Abstract

The high biomass production in the várzea depends on a high supply of nitrogen, one of the most important macronutrients. There are three main paths for nitrogen to reach the floodplain. Nitrogen derives firstly from the water of the Amazon River when it inundates the floodplain during rising water, secondly from atmospheric deposition, and thirdly from biological N2 fixation (Kern and Darwich 1997). Atmospheric N2 is fixed in various ecotopes, primarily on high elevational ranges of the floodplain. At an elevational range of 22–25 m a.s.l. the forest under study is located on a ridge on Marchantaria Island. It is influenced by the water level of the Camaleão Lake, leading to an average inundation period between 4.7 and 7.6 months per year. In this most advanced successional stage of phytocoenoses, pathways of nitrogen input and output were studied next to Lake Camaleão on Marchantaria Island (Kreibich et al. 2006). This island is not affected hydrochemically by non-inundated upland (terra firme). Interpretation of the results are therefore restricted to exclusive white-water habitats of the central Amazon floodplain.

Keywords

Anaerobic Ammonium Oxidation Dissolve Inorganic Nitrogen Floodplain Forest Legume Tree Terra Firme Forest 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Allen ON, Allen EK (1981) The Leguminosae – a source book of characteristics, uses and nodulation. Macmillan, Basingstoke, LondonGoogle Scholar
  2. Baillie IC (1989) Soil characteristics and classification in relation to the mineral nutrition of tropical wooded ecosystems. In: Proctor J (ed) Mineral nutrients in tropical forest and Savanna ecosystems. Blackwell Scientific, Oxford/London/Edinburgh, pp 15–26Google Scholar
  3. Barrios E, Herrera R (1994) Nitrogen cycling in a Venezuelan tropical seasonally flooded forest: soil nitrogen mineralization and nitrification. J Trop Ecol 10:399–416CrossRefGoogle Scholar
  4. Bischoff W-A, Siemens J, Kaupenjohann M (1999) Solute leaching into groundwater – A comparison of field methods considering preferential flow. Wasser Boden 51(12):37–42Google Scholar
  5. Bollmann A, Conrad R (1998) Influence of O2 availability on NO and N2O release by nitrification and denitrification in soils. Glob Change Biol 4:387–396CrossRefGoogle Scholar
  6. Broughton WJ, Jabbouri S, Perret X (2000) Keys to symbiotic harmony. J Bacteriol 182(20):5641–5652PubMedCrossRefGoogle Scholar
  7. Cole DW (1995) Soil nutrient supply in natural and managed forests. Plant Soil 168(169):43–53CrossRefGoogle Scholar
  8. Cornell SE, Jickells TD, Cape JN, Rowland AP, Duce RA (2003) Organic nitrogen deposition on land and coastal environments: a review of methods and data. Atmos Environ 37:2173–2191CrossRefGoogle Scholar
  9. Cullmann J, Junk JW, Weber G, Schmitz GH (2006) The impact of seepage influx on cation content of a Central Amazonian floodplain lake. J Hydrol 328:297–305CrossRefGoogle Scholar
  10. Darwich A, Kern J, Robertson B, Souza E (2000) Decomposition of Echinochloa polystachya and its contribution to nutrient cycling in a Central Amazonian floodplain lake. Verh Internat Verein Limnol 27:2611–2614Google Scholar
  11. Dick J, Skiba U, Munro R, Deans D (2006) Effect of N-fixing and non N-fixing trees and crops on NO and N2O emissions from Senegalese soils. J Biogeogr 33:416–423CrossRefGoogle Scholar
  12. Doignon-Bourcier F, Sy A, Willems A, Torck U, Dreyfus B, Gillis M, de Lajudie P (1999) Diversity of bradyrhizobia from 27 tropical Leguminosae species native of Senegal. System Appl Microbiol 22(4):647–661CrossRefGoogle Scholar
  13. Doyle RD, Fisher TR (1994) Nitrogen fixation by periphyton and plankton on the Amazon floodplain at Lake Calado. Biogeochemistry 26:41–66CrossRefGoogle Scholar
  14. Engle DL, Melack JM (1993) Consequences of riverine flooding for seston and the periphyton of floating meadows in an Amazon floodplain lake. Limnol Oceanogr 38:1500–1520CrossRefGoogle Scholar
  15. Fabian P, Kohlpaintner M, Rollenbeck R (2005) Biomass burning in the Amazon-fertilizer for the mountainous rain forest in Ecuador. Environ Sci Pollut Res 12:290–296CrossRefGoogle Scholar
  16. de Faria SM, Franco AA, de Jesus RM, de Menandro MS, Baitello JB, Mucci ESF, Döbereiner J, Sprent JI (1984) New nodulating legume trees from south-east Brazil. New Phytol 98:317–328CrossRefGoogle Scholar
  17. de Faria SM, Lewis GP, Sprent JI, Sutherland JM (1989) Occurrence of nodulation in the Leguminosae. New Phytol 111:607–619CrossRefGoogle Scholar
  18. de Faria SM, de Lima HC (1998) Additional studies of the nodulation status of legume species in Brazil. Plant Soil 200:185–192CrossRefGoogle Scholar
  19. Fearnside PM (1997) Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecol Manage 90:59–87CrossRefGoogle Scholar
  20. Furch K (1997) Chemistry of várzea and igapó soils and nutrient inventory of their floodplain forests. In: Junk WJ (ed) The Central Amazon floodplain: ecology of a pulsing system. Ecolog Stud 126:47–68. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  21. Furch K (1999) Zur Biogeochemie eines charakteristischen Überschwemmungsgebietes Zentralamazoniens, der Várzea auf der Ilha de Marchantaria nahe Manaus, Brasilien. Habilitationsschrift, University of Hamburg, p 454Google Scholar
  22. Furch K, Klinge H (1989) Chemical relationships between vegetation, soil and water in contrasting inundation areas of Amazonia. In: Proctor J (ed) Mineral nutrients in tropical forest and Savanna ecosystems. Blackwell Scientific, Oxford/London/Edinburgh, pp 189–204Google Scholar
  23. Furch K, Junk WJ (1992) Nutrient dynamics of submersed decomposing Amazonian herbaceous plant species Paspalum fasciculatum and Echinochloa polystachya. Rev hydrobiol trop 25:75–85Google Scholar
  24. Garcia-Montiel DC, Melillo JM, Steudler PA, Tian H, Neill C, Kicklighter DW, Feigl B, Piccolo M, Cerri CC (2004) Emissions of N2O and CO2 from terra firme forests in Rondonia, Brazil. Ecol Appl 14:S214–S220CrossRefGoogle Scholar
  25. Gehring C, Vlek PLG (2004) Limitations of the 15N natural abundance method for estimating biological nitrogen fixation in Amazonian forest legumes. Basic Appl Ecol 5:567–580CrossRefGoogle Scholar
  26. van den Graaf AA, Mulder A, de Bruijn P, Jetten MSM, Robertson LA, Kuenen JTG (1995) Anaerobic oxidation of annonium is a biologically mediated process. Appl Env Microb 61(4):1246–1251Google Scholar
  27. Grosse W, Armstrong J, Armstrong W (1996) A history of pressurised gas-flow studies in plants. Aquat Bot 54:87–100CrossRefGoogle Scholar
  28. Haaijer SCM, Lamers LPM, Smolders AJP, Jetten MSM, op den Camp HJM (2007) Iron sulfide and pyrite as potential electron donors for microbial nitrate reduction in freshwater wetlands. Geomicrobiol J 24(5):391–401CrossRefGoogle Scholar
  29. Haase K, De Simone O, Junk WJ, Schmidt W (2003) Internal oxygen transport in cuttings from flood-adapted várzea tree species. Tree Phys 23:1069–1076CrossRefGoogle Scholar
  30. Haukka K, Lindström K, Young JPW (1996) Diversity of partial 16S rRNA sequences among and within strains of African rhizobia isolated from Acacia and Prosopis. Syst Appl Microbiol 19:352–359CrossRefGoogle Scholar
  31. Haukka K, Lindström K, Young JPW (1998) Three phylogenetic groups of nodA and nifH genes in Sinorhizobium and Mesorhizobium isolates from leguminous trees growing in Africa and Latin America. Appl Environ Microbiol 64(2):419–426PubMedGoogle Scholar
  32. Högberg P (1990) 15N natural abundance as a possible marker for the ectomycorrhizal habit of trees in mixed African woodlands. New Phytol 115:483–486CrossRefGoogle Scholar
  33. Högberg P, Alexander IJ (1995) Roles of root symbioses in African woodland and forest: evidence from 15N abundance and foliar analysis. J Ecol 83:217–224CrossRefGoogle Scholar
  34. Jetten MSM, Strous M, van de Pas-Schoonen K, Schalk J, van Dongen UGJM, van den Graaf AA, Logemann S, Muyzer G, van Loosdrecht MCM, Kuenen JG (1999) The anaerobic oxidation of ammonium. FEMS Microbiol Rev 22:421–437CrossRefGoogle Scholar
  35. Jordan C, Caskey W, Escalante G, Herrera R, Montagnini F, Todd R, Uhl C (1983) Nitrogen dynamics during conversion of primary Amazonian rain forest to slash and burn agriculture. Oikos 40:131–139CrossRefGoogle Scholar
  36. Jordan DC (1984) Family III. Rhizobiaceae Conn 1938, 321AL. In: Krieg NR, Holt JC (eds) Bergey’s manual of systematic bacteriology. Williams & Wilkins, Baltimore 1:234–254Google Scholar
  37. Junk WJ (1997b) General aspects of floodplain ecology with special reference to Amazonian floodplains. In: Junk WJ (ed) The Central Amazon floodplain: ecology of a pulsing system. Ecolog Studies 126:3–20. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  38. Junk WJ, Soares MGM, Saint-Paul U (1997) The fish. In: Junk WJ (ed) The Central Amazon floodplain – ecology of a pulsing system. Springer, Berlin. Ecolog Stud 126:385–408Google Scholar
  39. Kern J (1995) Die Bedeutung der N2-Fixierung und der Denitrifikation für den Stickstoffhaushalt des amazonischen Überschwemmungssees Lago Camaleão. Ph.D. thesis, University of Hamburg, pp 178Google Scholar
  40. Kern J, Darwich A (1997) Nitrogen turnover in the várzea. In: Junk WJ (ed) The Central Amazon floodplains. Ecology of a pulsing system. Springer, Berlin/Heidelberg/New York, pp 119–135CrossRefGoogle Scholar
  41. Kern J, Darwich A (2003) The role of periphytic N2 fixation for stands of macrophytes in the whitewater floodplain (Várzea). Amazoniana 17:361–375Google Scholar
  42. Kern J, Darwich A, Furch K, Junk WJ (1996) Seasonal denitrification in flooded and exposed sediments from the Amazon floodplain at Lago Camaleão. Microb Ecol 32:47–57PubMedCrossRefGoogle Scholar
  43. Kern J, Darwich A, Förstel H (2000) Studies on the role of N2 fixation in the floodplain forest in the Central Amazon. Verh Internat Verein Limnol 27:610–614Google Scholar
  44. Klinge H, Furch K, Harms E, Revilla J (1983) Foliar nutrient levels of native tree species from central Amazonia. 1 Inundation forests. Amazoniana 8:19–45Google Scholar
  45. Koschorreck M (2005) Nitrogen turnover in drying sediments of an Amazon floodplain lake. Microb Ecol 49:567–577PubMedCrossRefGoogle Scholar
  46. Koschorreck M, Darwich A (2003) Nitrogen dynamics in seasonally flooded soils in the Amazon floodplain. Wetlands Ecol Manage 11:317–330CrossRefGoogle Scholar
  47. Kreibich H (2002) N2 fixation and denitrification in a floodplain forest in Central Amazonia, Brazil. Forschungsbericht Agrartechnik – VDI-MEG no. 398Google Scholar
  48. Kreibich H, Kern J (2003) Nitrogen fixation and denitrification in a floodplain forest near Manaus, Brazil. Hydrolog Process 17:1431–1441CrossRefGoogle Scholar
  49. Kreibich H, Kern J (2004) Forest biological resources in the Amazon basin. In: Werner D (ed) Biological resources and migration. Springer, Berlin/Heidelberg, pp 83–92CrossRefGoogle Scholar
  50. Kreibich H, Lehmann J, Scheufele G, Kern J (2003) Nitrogen availability and leaching during the terrestrial phase in a várzea forest of the Central Amazon floodplain. Biol Fert Soils 39:62–64CrossRefGoogle Scholar
  51. Kreibich H, Kern J, de Camargo PB, Moreira MZ, Victória RL, Werner D (2006) Estimation of symbiotic N2 fixation in an Amazon floodplain forest. Oecologia 147(2):359–368PubMedCrossRefGoogle Scholar
  52. Lafay B, Burdon JJ (1998) Molecular diversity of rhizobia occurring on native shrubby legumes in southeastern Australia. Appl Environ Microbiol 64(10):3989–3997PubMedGoogle Scholar
  53. Lehmann J, Kaiser K, Peter I (2001) Resin cores for the estimation of nutrient fluxes in highly permeable tropical soil. J Plant Nutri Soil Sci 164:57–64CrossRefGoogle Scholar
  54. Lesack LFW, Melack JM (1991) The deposition, composition, and potential sources of major ionic solutes in rain of the Central Amazon Basin. Water Resources Res 27:2953–2977CrossRefGoogle Scholar
  55. Martinelli LA, Victoria RL, Trivelin PCO, Devol AH, Richey JE (1992) 15N Natural abundance in plants of the Amazon River floodplain and potential atmospheric N2 fixation. Oecologia 90:591–596CrossRefGoogle Scholar
  56. Martinelli LA, Piccolo MC, Townsend AR, Vitousek PM, Cuevas E, Mcdowell W, Robertson GP, Santos OC, Treseder K (1999) Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests. Biogeochemistry 46:45–65Google Scholar
  57. Matson PA, McDowell WH, Townsend AR, Vitousek PM (1999) The globalization of N deposition: ecosystem consequences in tropical environments. Biogeochemistry 46:67–83Google Scholar
  58. Melack JM, Fisher TR (1988) Denitrification and nitrogen fixation in an Amazon floodplain lake. Verh Internat Verein Limnol 23:2232–2236Google Scholar
  59. Mertes LAK (1994) Rates of flood-plain sedimentation on the central Amazon River. Geology 22:171–174CrossRefGoogle Scholar
  60. Meyer U (1991) Feinwurzelsysteme und Mykorrhizatypen als Anpassungsmechanismen in zentralamazonischen Überschwemmungswäldern- Igapó and Várzea. Ph.D. thesis, University of Hohenheim, GermanyGoogle Scholar
  61. Meyer U, Junk WJ, Linck C (2010) Fine root systems and mycorrhizal associations in two central Amazonian floodplain forests – igapó and várzea. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  62. de Moreira FMS, da Silva MF, de Faria SM (1992) Occurrence of nodulation in legume species in the Amazon region of Brazil. New Phytol 121:563–570CrossRefGoogle Scholar
  63. de Moreira FMS, Gillis M, Pot B, Kersters K, Franco AA (1993) Characterisation of rhizobia isolated from different divergence groups of tropical Leguminosae by Comparative Polyacrylamide Gel Electrophoresis of their total proteins. System Appl Microb 16:135–146CrossRefGoogle Scholar
  64. de Moreira FMS, Haukka K, Young JPW (1998) Biodiversity of rhizobia isolated from a wide range of forest legumes in Brazil. Molecul Ecol 7(7):889–895CrossRefGoogle Scholar
  65. Neff JC, Holland EA, Dentener FJ, McDowell WH, Russell KM (2002) The origin, composition and rates of organic nitrogen deposition: a missing piece of the nitrogen cycle? Biogeochemistry 57:99–136CrossRefGoogle Scholar
  66. Neill C, Piccolo MC, Melillo JM, Steudler PA, Cerri CC (1999) Nitrogen dynamics in Amazon forest and pasture soils measured by 15N pool dilution. Soil Biol Biochem 31:567–572CrossRefGoogle Scholar
  67. Niner BM, Hirsch AM (1998) How many Rhizobium genes, in addition to nod, nif/fix, and exo, are needed for nodule development and function? Symbiosis 24:51–102Google Scholar
  68. Norris DO (1965) Acid production by Rhizobium a unifying concept. Plant Soil 22(2):143–166CrossRefGoogle Scholar
  69. Norris DO (1969) Observation on the nodulation status of rainforest leguminous species in Amazonia and Guyana. Trop Agric 46:145–151Google Scholar
  70. Parolin P, Ferreira LV, Junk WJ (1998) Central Amazonia floodplains: effect of two water types on the wood density of trees. Verh Internat Verein Limnol 26:1106–1112Google Scholar
  71. Persson T, Rudebeck A, Jussy JH, Colin-Belgrand M, Priemé A, Dambrine E, Karlsson PS, Sjöberg RM (2000) Soil nitrogen turnover – mineralisation, nitrification and denitrification in European forest soils. In: Schulze ED (ed) Carbon and nitrogen cycling in European forest ecosystems. Springer, Berlin/Heidelberg, pp 297–331CrossRefGoogle Scholar
  72. Piedade MTF, Junk WJ, Long SP (1991) The productivity of the C4 grass Echinochloa polystachia on the Amazon Floodplain. Ecology 72(4):1456–1463CrossRefGoogle Scholar
  73. de Ribeiro MNG, Adis J (1984) Local rainfall variability – a potential bias for bioecological studies in the central Amazon. Acta Amazonica 14:159–174Google Scholar
  74. Roggy JC, Prevost MF, Garbaye J, Domenach AM (1999a) Nitrogen cycling in the tropical rain forest of French Guiana: comparison of two sites with contrasting soil types using δ15N. J Trop Ecol 15:1–22CrossRefGoogle Scholar
  75. Salati E, Sylvester-Bradley R, Victoria RL (1982) Regional gains and losses of nitrogen in the Amazon basin. Plant Soil 67:367–376CrossRefGoogle Scholar
  76. Sangakkara UR, Hartwig UA, Nösberger J (1996) Soil moisture and potassium affect the performance of symbiotic nitrogen fixation in faba bean and common bean. Plant Soil 184:123–130CrossRefGoogle Scholar
  77. Schöngart J, Piedade MTF, Ludwigshausen S, Horna V, Worbes M (2002) Phenology and stem-growth periodicity of tree species in Amazonian floodplain forests. J Trop Ecol 18:581–597CrossRefGoogle Scholar
  78. Shearer G, Kohl DH (1986) N2-fixation in field settings: estimations based on natural 15N abundance. Aust J Plan 13:699–756Google Scholar
  79. Smith KA, Ball T, Conen F, Dobbie KE, Massheder J, Rey A (2003) Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. European J Soil Science 54:779–791CrossRefGoogle Scholar
  80. Sprent JI (1987) The ecology of the nitrogen cycle. Cambridge University Press, CambridgeGoogle Scholar
  81. Sprent JI (1995) Legume trees and shrubs in the tropics: N2 fixation in perspective. Soil Biol Biochem 27(4/5):401–407CrossRefGoogle Scholar
  82. Sprent JI (1999) Nitrogen fixation and growth of non-crop legume species in diverse environments. Perspect Plant Ecol Evolut System 2(2):149–162CrossRefGoogle Scholar
  83. Sylvester-Bradley R, de Oliveira LA, de Podestá Filho JA, John TVS (1980) Nodulation of legumes, nitrogenase activity of roots and occurrence of nitrogen-fixing Azospirillium spp. in representative soils of central Amazonia. Agro-Ecosystems 6:249–266CrossRefGoogle Scholar
  84. Thielen-Klinge A (1997) Rolle der biologischen N2-Fixierung von Baumleguminosen im östlichen Amazonasgebiet, Brasilien – Anwendung der 15N natural abundance Methode. Ph.D. thesis, University of GöttingenGoogle Scholar
  85. Tsai SM, Nodari RO, Moon DH, Camargo LEA, Vencovsky R, Gepts P (1998) QTL mapping for nodule number and common bacterial blight in Phaseolus vulgaris L. Plant Soil 204(1):135–145CrossRefGoogle Scholar
  86. Vinuesa P, Rademaker JLW, de Bruijn FJ, Werner D (1998) Genotypic characterisation of Bradyrhizobium strains nodulating endemic woody legumes of the Canary Islands by PCR-restriction fragment length polymorphism analyses of genes encoding 16S rRNA (16S rDNA) and 16S-23S rDNA intergenic spacers, repetitive extragenic palindromic PCR genomic fingerprinting and partial 16S rDNA sequencing. Appl Environ Microbiol 64(6):2096–2104PubMedGoogle Scholar
  87. Vitousek PM (1984) Litterfall, nutrient cycling and nutrient limitation in tropical forests. Ecology 65(1):285–298CrossRefGoogle Scholar
  88. Whitmore TC (1998) An introduction to tropical rain forests, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  89. Williams WM, Hoh CH, Lenz F, Broughton WJ (1988) Rhizobia in tropical legumes: environmental factors and the reduction of nitrogen. Soil Biol B 20:667–675CrossRefGoogle Scholar
  90. Worbes M (1985) Structural and other adaptations to longterm flooding by trees in Central Amazonia. Amazoniana 9:459–484Google Scholar
  91. Worbes M (1997) The forest ecosystem of the floodplains. In: Junk WJ (ed) The central Amazon floodplain: ecology of a pulsating system. Ecolog Stud 126:223–265. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  92. Worbes M, Klinge H, Revilla JD, Martius C (1992) On the dynamics, floristic subdivision and geographical distribution of várzea forests in Central Amazonia. J Vegetat Sci 3:553–564CrossRefGoogle Scholar
  93. Yoneyama T, Muraoka T, Murakami T, Boonkerd N (1993) Natural abundance of 15N in tropical plants with emphasis on tree legumes. Plant Soil 153:295–304CrossRefGoogle Scholar
  94. Young JPW, Haukka KE (1996) Diversity and phylogeny of rhizobia. New Phytol 133:87–94CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Jürgen Kern
    • 1
  • Heidi Kreibich
    • 2
  • Matthias Koschorreck
    • 3
  • Assad Darwich
    • 4
  1. 1.Department BioengineeringLeibniz Institute for Agricultural Engineering (ATB)PotsdamGermany
  2. 2.Section HydrologyGerman Research Centre for Geosciences (GFZ)PotsdamGermany
  3. 3.Department Lake ResearchHelmholtz Centre for Environmental Research – UFZMagdeburgGermany
  4. 4.National Institute of Amazon Research (INPA)ManausBrazil

Personalised recommendations