Skip to main content

Sea Surface Temperature Measurements from Thermal Infrared Satellite Instruments: Status and Outlook

  • Chapter
  • First Online:
Oceanography from Space

Abstract

Over the last 10 years there has been significant development in the definition, availability, future planning and service provision of satellite sea surface temperature measurements based on TIR satellite data. A short overview of key past, present and future TIR sensors is provided together with an overview of the primary on-going retrieval challenges and issues. The future outlook for TIR satellite systems is good, with assured continuity of the AATSR class of instruments, as part of the EU Sentinel, and continuity of the AVHRR/MODIS class instruments as part of the USA NPOESS program. Geostationary TIR imager capability is also assured until 2020. The international framework pioneered by the Group for High Resolution Sea Surface Temperature is then discussed in the context of developing an international community of SST producers and users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See http://www.osi-saf.org

  2. 2.

    See http://www.ghrsst.org

  3. 3.

    See http://ghrsst-pp.metoffice.com/pages/latest_analysis/sst_monitor/daily/ens/index.html

  4. 4.

    See http://www.hrdds.net

  5. 5.

    See http://ghrsst.nodc.noaa.gov

References

  • Cayula JF, Cornillon P (1996) Cloud detection from a sequence of SST images. Rem Sens Environ 55:80–88

    Article  Google Scholar 

  • CEOS (2008) The Earth Observation Handbook: Climate Change Special Edition 2008. Available at http://www.eohandbook.com/

  • CEOS (2009) The Earth Observation Handbook Online Database. Available at shttp://database. eohandbook.com/

    Google Scholar 

  • Corlett GK, Barton IJ, Donlon CJ, Edwards MC, Good SA, Horrocks LA, Llewellyn-Jones DT, Merchant CJ, Minnett PJ, Nightingale TJ, Noyes EJ, O’Carroll AG, Remedios JJ, Robinson IS, Saunders RW, Watts JG (2006) The accuracy of SST retrievals from AATSR: an initial assessment through geophysical validation against in situ radiometers, buoys and other SST data sets. Adv Space Res 37(4):764–769

    Article  Google Scholar 

  • Donlon CJ (2008) The next generation of multi-sensor merged sea surface temperature data sets for Europe. In Barale V, Gade M (eds.) Remote sensing of the European Seas, Springer, Heidelberg, pp. 177–188

    Google Scholar 

  • Donlon CJ, Casey KS, Robinson IS, Gentemann CL, Reynolds RW, Barton I, Arino O, Stark J, Rayner N, LeBorgne P, Poulter D, Vazquez­Cuervo J, Armstrong E, Beggs H, Llewellyn Jones D, Minnett PJ, Merchant CJ, Evans R (2009) The GODAE high resolution sea surface temperature pilot project (GHRSST-PP). Oceanography 22(3):34–45

    Google Scholar 

  • Donlon CJ, Minnett PJ, Gentemann C, Nightingale TJ, Barton IJ, Ward B, Murray J (2002) Toward improved validation of satellite sea surface skin temperature measurements for climate research. J Climate 15:353–369

    Google Scholar 

  • Donlon CJ, Robinson I, Casey KS, Vazquez-Cuervo J, Armstrong E, Arino O, Gentemann C, May D, LeBorgne P, Piollé J, Barton I, Beggs H, Poulter DJS, Merchant CJ, Bingham A, Heinz S, Harris A, Wick G, Emery B, Minnett P, Evans R, Llewellyn-Jones D, Mutlow C, Reynolds R, Kawamura H, Rayner N (2007) The global ocean data assimilation experiment (GODAE) high resolution sea surface temperature pilot project (GHRSST-PP). Bull Amer Meteor Soc 88(8):1197–1213, doi:10.1175/BAMS-88-8-1197

    Article  Google Scholar 

  • Kilpatrick KA, Podesta GP, Evans R (2001) Overview of the NOAA/NASA advanced very high resolution radiometer pathfinder algorithm for sea surface temperature and associated matchup database. J Geophys Res 106(C5):9179–9197

    Article  Google Scholar 

  • May DA, Parmeter MM, Olszewski DS, McKenzie BD (1998) Operational processing of satellite sea surface temperature retrievals at the naval oceanographic office. Bull Am Met Soc 79:397–407

    Article  Google Scholar 

  • Merchant CJ, Embury O, Le Borgne P, Bellec B (2006) Saharan dust in nighttime thermal imagery: detection and reduction of related biases in retrieved sea surface temperature. Remote Sens Environ 104(1):15–30

    Google Scholar 

  • Merchant CJ, Harris AR, Maturi E, MacCallum S (2005) Probabilistic physically-based cloud screening of satellite infra-red imagery for operational sea surface temperature retrieval, quart. J Royal Met Soc 131:2735–2755

    Article  Google Scholar 

  • Merchant CJ, Le Borgne P (2004) Retrieval of sea surface temperature from space based on modeling of infrared radiative transfer: capabilities and limitations. J Atmos Ocean Technol 22(11):1734–1746, doi:10.1175/JTECH1667.1

    Article  Google Scholar 

  • Merchant CJ, Le Borgne P, Marsouin A, Roquet H (2008a) Optimal estimation of sea surface temperature from split-window observations. Rem Sens Env 112(5):2469–2484, doi:10.1016/j.rse.2007.11.011

    Google Scholar 

  • Merchant CJ, Llewellyn-Jones D, Saunders RW, Rayner NA, Kent EC, Old CP, Berry D, Birks AR, Blackmore T, Corlett GK, Embury O, Jay VL, Kennedy J, Mutlow CT, Nightingale TJ, Ocarroll AG, Pritchard MJ, Remedios JJ, Tett S (2008b) Deriving a sea surface temperature record suitable for climate change research from the along-track scanning radiometers. Adv Sp Res 41(1):1–11, doi:10.1016/j.asr.2007.07.041

    Article  Google Scholar 

  • O’Carroll AG, Eyre JR, Saunders RW (2008) Three­way error analysis between AATSR, AMSR­E, and in situ sea surface temperature observations. J Atmos Oceanic Technol 25:1197–1207

    Google Scholar 

  • Robinson IS (2004) Measuring the oceans from space: the principles and methods of satellite oceanography, Springer/Praxis, Berlin, Germany, ISBN 3-540-42647-7, p. 670

    Google Scholar 

  • Stark JD, Donlon CJ, Martin MJ, McCulloch ME (2007) OSTIA: an operational, high resolution, real time, global sea surface temperature analysis system. Oceans ’07 IEEE Aberdeen, Conference Proceedings, Marine Challenges: Coastline to Deep Sea, Aberdeen, Scotland

    Google Scholar 

  • Vincent RF, Marsden RF, Minnett PJ, Buckley JR (2008a) Arctic waters and marginal ice zones: Part 2 – An investigation of arctic atmospheric infrared absorption for AVHRR sea surface temperature estimates. J Geophys Res 113:C08044, doi:10.1029/2007JC004354

    Article  Google Scholar 

  • Vincent RF, Marsden RF, Minnett PJ, Creber KAM, Buckley JR (2008b) Arctic waters and marginal ice zones: a composite arctic sea surface temperature algorithm using satellite thermal data. J Geophys Res 113:C04021, doi:10.1029/2007JC004353

    Article  Google Scholar 

  • Walton CC, Pichel WG, Sapper JF, May DA (1998) The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with the NOAA polar-orbiting environmental satellites. J Geophys Res 103:27999–28012

    Article  Google Scholar 

  • Zhang HM, Reynolds RW, Lumpkin R, Molinari R, Arzayus K, Johnson M, Smith TM (2009) An integrated global observing system for sea surface temperature using satellites and in situ data: research to operations. Bull Amer Meteor Soc 90:31–38

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig J. Donlon .

Editor information

Editors and Affiliations

Appendix

Appendix

Key TIR sensors and their basic characteristics for missions operating from 2000 and up to 2020 (data obtained from CEOS 2009):

  • Along Track Scanning Radiometer 2 (ATSR-2)

  • Advanced along Track Scanning Radiometer (AATSR)

  • Advanced Very High Resolution Radiometer 3 (AVHRR/3)

  • Moderate Resolution Imaging Spectroradiometer (MODIS)

  • Spinning Enhanced Visible and Infrared Imager (SEVIRI)

  • Visible and Infrared Sounder (VIRS)

  • Meteosat Third Generation (MTG)

  • MTSAT Imager

  • GOES Imager

  • Visible/Infrared Imager Radiometer Suite (VIIRS)

  • Sea and Land Surface Temperature Radiometer (SLSTR)

  • Multispectral Visible and Infrared Scan Radiometer (10 channels)

  • Visible and Infra-red Scan Radiometer (VIRR)

The following tables list each instruments’ name, mission(s), spatial resolution, swath, wavebands, description, as in:

Instrument

Mission(s)

Spatial resolution

Swath width

Spectral bands

Description

Along track scanning radiometer 2 (ATSR-2)

ERS-2 (1995-04-21 2011-12-31)

1.1 km

512 km

VIS – SWIR:

  

0.65 μm

  

0.85 μm

  

1.27 μm

  

1.6 μm

  

SWIR-TIR:

  

1.6 μm

  

3.7 μm

  

11 μm

  

12 μm

Imaging Vis/IR radiometer exploiting different viewing conditions

Advanced along track scanning radiometer (AATSR)

ENVISAT (2002-03-01 2013-12-31)

1.1 km

512 km

VIS – NIR:

  

0.555 μm

  

0.659 μm

  

0.865 μm

  

SWIR:

  

1.6 μm

  

MWIR:

  

3.7 μm

  

TIR:

  

10.85 μm

  

12 μm

Imaging Vis/IR radiometer exploiting different viewing conditions

Advanced very high resolution radiometer 3 (AVHRR/3)

NOAA-12 (1991-05-14 2005-12-31)

NOAA-14 (1994-12-30 2005-12-31)

NOAA-15 (1998-05-01 2010-12-31)

NOAA-16 2000-09-21 2012-12-31

NOAA-17 (2002-06-24 2014-12-31)

NOAA-18 (2005-05-20 2015-12-31)

NOAA-19 (2009-02-04 2016-03-01)

EUMETSAT

Metop-A (2006-10-19 2011-11-01)

Metop-B (2012-04-02 2017-05-01)

Metop-C (2016-04-02 2021-12-01)

1.1 km

~3,000 km ensures full global coverage twice daily

VIS:

0.58–0.68 μm

  

NIR:

  

0.725–1.1 μm

  

SWIR:

  

1.58–1.64 μm

  

MWIR:

  

3.55–3.93 μm

  

TIR:

  

10.3–11.3 μm

  

11.5–12.5 μm

Multi-purpose imaging Vis/IR radiometer

Imaging multi-spectral radiometers (vis/IR)

Moderate resolution imaging spectroradiometer (MODIS)

Terra (1999-12-18 2011-09-30)

Aqua (2002-05-04 2011-09-30)

250 m (day)

2,330 km

VIS – TIR:

1,000 m (night)

SST: 1,000 m

 

36 bands in range 0.4–14.4 μm

Medium-resolution spectro-radiometer

Spinning enhanced visible and infrared imager (SEVIRI)

Meteosat-8 (2002-08-13 2011-06-30)

Meteosat 9 (2005-12-21 2014-06-30)

HRV = 1 km all others = 3 km (spatial sampling distance at SSP)

Full earth disk

HRV:

~0.48–0.91 μm

  

VIS:

  

0.6 μm

0.8 μm

NIR:

1.6 μm

  

IR:

  

3.9 μm

  

6.3 μm

  

7.3 μm

  

8.7 μm

  

9.7 μm

  

10.8 μm

  

12.0 μm

  

13.4 μm

Multi-purpose imaging Vis/IR radiometer, in geostationary orbit

Imaging multi-spectral radiometers (vis/IR)

Visible and infrared sounder (VIRS)

Tropical rainfall mapping mission (TRMM) (1997-11-27 2011-09-30)

2 km

720 km

VIS:

  

0.63 μm

  

SWIR – MWIR:

  

1.60 μm

  

3.75 μm

  

TIR:

  

10.8 μm

  

12.0 μm

NASA/JAXA

Imaging multi-spectral radiometers (vis/IR)

Multi-purpose imaging Vis/IR radiometer

Meteosat third generation (MTG)

MTG Imager-1 (2016-12-15 2025-06-15)

MTG Imager-2 (2021-06-15 2029-12-15)

MTG Imager-3 (2025-01-15 2033-07-15)

MTG Imager-4 (2029-06-15 2037-12-15)

VIS/SWIR:

Full earth disk

VIS:

0.5, 1.0 km

 

0.4 μm

IR:

 

0.5 μm

2.0 km

 

0.6 μm

  

0.8 μm

  

0.9 μm

  

NIR:

  

1.3 μm

  

1.6 μm

  

2.2 μm

  

3.8 μm

  

6.3 μm

  

7.3 μm

  

8.7 μm

  

9.7 μm

  

10.5 μm

  

12.3 μm

  

13.3 μm

Multi-purpose imaging Vis/IR radiometer, in geostationary orbit

Imaging multi-spectral radiometers (vis/IR)

MTSAT imager

MTSAT-1, 2 and 3

VIS: 1 km

Full earth disk (every

VIS – SWIR:

TIR: 4 km

hour)

0.55 – 0.80 μm

  

MWIR – TIR:

  

3.5 – 4 μm

  

6.5 – 7 μm

  

10.3 – 11.3 μm

  

11.5 – 12.5 μm

Imaging multi-spectral radiometers (vis/IR)

Multi-purpose imaging Vis/IR radiometer

GOES imager

GOES-10

GOES-11

GOES-12

GOES-8

GOES-9

GOES-14

GOES-P

GOES-13

10 km

Full earth disk

GOES 8 – 11

  

VIS:

  

(1 channel, 8 detectors)

  

IR:

  

(4 channels)

  

3.9 μm

  

6.7 μm

  

10.7 μm

  

12 μm

  

GOES 12 – Q

  

VIS:

  

(1 channel, 8 detectors)

  

IR:

  

(4 channels)

  

3.9 μm

  

6.7 μm

  

10.7 μm

  

13.3 μm

Imaging multi-spectral radiometers (vis/IR)

Multi-purpose imaging Vis/IR radiometer

Visible/Infrared imager radiometer suite (VIIRS)

NPP NPOESS preparatory project (2010-06-02 2015-06-02)

NPOESS-1 (2013-01-31 2020-01-01)

NPOESS-2 (2016-01-31 2022-01-01)

NPOESS-3 (2018-01-31 2025-01-01)

NPOESS-4 (2020-01-31 2027-01-01)

400 m–1.6 km

3,000 km

VIS – TIR:

  

22 channels range 0.4–12.5 μm

NASA/NOAA and USA DoD

Imaging multi-spectral radiometers (vis/IR)

Multi-purpose imaging Vis/IR radiometer

Sea and land surface temperature radiometer (SLSTR)

Sentinel-3A (2012-10-01 2019-10-01)

Sentinel-3B (2015-10-01 2022-10-01)

VNIR/SWIR:

Near-nadir view:

S1

0.555 μm

500 m

1,400 km

S2

0.659 μm

TIR:

Backward view:

S3

0.865 μm

1 km

750 km

S4

1.375 μm

  

S5

1.61 μm

  

S6

2.25 μm

  

S7

3.74 μm

  

S8

10.95 μm

  

S9

12 μm

ESA/EC

Imaging multi-spectral radiometers (vis/IR)

Multi-channel/direction/polarisation radiometer

Multispectral visible and infrared scan radiometer (10 channels)

FY-1C and 1D

1.1 km

3,200 km

VIS:

  

0.43–0.48 μm

  

0.48–0.53 μm

  

0.53–0.58 μm

  

0.58–0.68 μm

  

NIR:

  

0.84–0.89 μm

  

NIR–SWIR:

  

0.90–0.965 μm

  

1.58–1.68 μm

  

3.55–3.93 μm

  

TIR:

  

10.3–11.3 μm

  

11.5–12.5 μm

Chinese Space Agency

Imaging multi-spectral radiometers (vis/IR)

Multi-purpose imaging Vis/IR radiometer

Table 13

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Donlon, C.J. (2010). Sea Surface Temperature Measurements from Thermal Infrared Satellite Instruments: Status and Outlook. In: Barale, V., Gower, J., Alberotanza, L. (eds) Oceanography from Space. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8681-5_13

Download citation

Publish with us

Policies and ethics