Sea Surface Temperature Measurements from Thermal Infrared Satellite Instruments: Status and Outlook



Over the last 10 years there has been significant development in the definition, availability, future planning and service provision of satellite sea surface temperature measurements based on TIR satellite data. A short overview of key past, present and future TIR sensors is provided together with an overview of the primary on-going retrieval challenges and issues. The future outlook for TIR satellite systems is good, with assured continuity of the AATSR class of instruments, as part of the EU Sentinel, and continuity of the AVHRR/MODIS class instruments as part of the USA NPOESS program. Geostationary TIR imager capability is also assured until 2020. The international framework pioneered by the Group for High Resolution Sea Surface Temperature is then discussed in the context of developing an international community of SST producers and users.


Saharan Dust Optimal Estimation Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Cayula JF, Cornillon P (1996) Cloud detection from a sequence of SST images. Rem Sens Environ 55:80–88CrossRefGoogle Scholar
  2. CEOS (2008) The Earth Observation Handbook: Climate Change Special Edition 2008. Available at
  3. CEOS (2009) The Earth Observation Handbook Online Database. Available at shttp://database. Scholar
  4. Corlett GK, Barton IJ, Donlon CJ, Edwards MC, Good SA, Horrocks LA, Llewellyn-Jones DT, Merchant CJ, Minnett PJ, Nightingale TJ, Noyes EJ, O’Carroll AG, Remedios JJ, Robinson IS, Saunders RW, Watts JG (2006) The accuracy of SST retrievals from AATSR: an initial assessment through geophysical validation against in situ radiometers, buoys and other SST data sets. Adv Space Res 37(4):764–769CrossRefGoogle Scholar
  5. Donlon CJ (2008) The next generation of multi-sensor merged sea surface temperature data sets for Europe. In Barale V, Gade M (eds.) Remote sensing of the European Seas, Springer, Heidelberg, pp. 177–188Google Scholar
  6. Donlon CJ, Casey KS, Robinson IS, Gentemann CL, Reynolds RW, Barton I, Arino O, Stark J, Rayner N, LeBorgne P, Poulter D, Vazquez­Cuervo J, Armstrong E, Beggs H, Llewellyn Jones D, Minnett PJ, Merchant CJ, Evans R (2009) The GODAE high resolution sea surface temperature pilot project (GHRSST-PP). Oceanography 22(3):34–45Google Scholar
  7. Donlon CJ, Minnett PJ, Gentemann C, Nightingale TJ, Barton IJ, Ward B, Murray J (2002) Toward improved validation of satellite sea surface skin temperature measurements for climate research. J Climate 15:353–369Google Scholar
  8. Donlon CJ, Robinson I, Casey KS, Vazquez-Cuervo J, Armstrong E, Arino O, Gentemann C, May D, LeBorgne P, Piollé J, Barton I, Beggs H, Poulter DJS, Merchant CJ, Bingham A, Heinz S, Harris A, Wick G, Emery B, Minnett P, Evans R, Llewellyn-Jones D, Mutlow C, Reynolds R, Kawamura H, Rayner N (2007) The global ocean data assimilation experiment (GODAE) high resolution sea surface temperature pilot project (GHRSST-PP). Bull Amer Meteor Soc 88(8):1197–1213, doi:10.1175/BAMS-88-8-1197CrossRefGoogle Scholar
  9. Kilpatrick KA, Podesta GP, Evans R (2001) Overview of the NOAA/NASA advanced very high resolution radiometer pathfinder algorithm for sea surface temperature and associated matchup database. J Geophys Res 106(C5):9179–9197CrossRefGoogle Scholar
  10. May DA, Parmeter MM, Olszewski DS, McKenzie BD (1998) Operational processing of satellite sea surface temperature retrievals at the naval oceanographic office. Bull Am Met Soc 79:397–407CrossRefGoogle Scholar
  11. Merchant CJ, Embury O, Le Borgne P, Bellec B (2006) Saharan dust in nighttime thermal imagery: detection and reduction of related biases in retrieved sea surface temperature. Remote Sens Environ 104(1):15–30Google Scholar
  12. Merchant CJ, Harris AR, Maturi E, MacCallum S (2005) Probabilistic physically-based cloud screening of satellite infra-red imagery for operational sea surface temperature retrieval, quart. J Royal Met Soc 131:2735–2755CrossRefGoogle Scholar
  13. Merchant CJ, Le Borgne P (2004) Retrieval of sea surface temperature from space based on modeling of infrared radiative transfer: capabilities and limitations. J Atmos Ocean Technol 22(11):1734–1746, doi:10.1175/JTECH1667.1CrossRefGoogle Scholar
  14. Merchant CJ, Le Borgne P, Marsouin A, Roquet H (2008a) Optimal estimation of sea surface temperature from split-window observations. Rem Sens Env 112(5):2469–2484, doi:10.1016/j.rse.2007.11.011Google Scholar
  15. Merchant CJ, Llewellyn-Jones D, Saunders RW, Rayner NA, Kent EC, Old CP, Berry D, Birks AR, Blackmore T, Corlett GK, Embury O, Jay VL, Kennedy J, Mutlow CT, Nightingale TJ, Ocarroll AG, Pritchard MJ, Remedios JJ, Tett S (2008b) Deriving a sea surface temperature record suitable for climate change research from the along-track scanning radiometers. Adv Sp Res 41(1):1–11, doi:10.1016/j.asr.2007.07.041CrossRefGoogle Scholar
  16. O’Carroll AG, Eyre JR, Saunders RW (2008) Three­way error analysis between AATSR, AMSR­E, and in situ sea surface temperature observations. J Atmos Oceanic Technol 25:1197–1207Google Scholar
  17. Robinson IS (2004) Measuring the oceans from space: the principles and methods of satellite oceanography, Springer/Praxis, Berlin, Germany, ISBN 3-540-42647-7, p. 670Google Scholar
  18. Stark JD, Donlon CJ, Martin MJ, McCulloch ME (2007) OSTIA: an operational, high resolution, real time, global sea surface temperature analysis system. Oceans ’07 IEEE Aberdeen, Conference Proceedings, Marine Challenges: Coastline to Deep Sea, Aberdeen, ScotlandGoogle Scholar
  19. Vincent RF, Marsden RF, Minnett PJ, Buckley JR (2008a) Arctic waters and marginal ice zones: Part 2 – An investigation of arctic atmospheric infrared absorption for AVHRR sea surface temperature estimates. J Geophys Res 113:C08044, doi:10.1029/2007JC004354CrossRefGoogle Scholar
  20. Vincent RF, Marsden RF, Minnett PJ, Creber KAM, Buckley JR (2008b) Arctic waters and marginal ice zones: a composite arctic sea surface temperature algorithm using satellite thermal data. J Geophys Res 113:C04021, doi:10.1029/2007JC004353CrossRefGoogle Scholar
  21. Walton CC, Pichel WG, Sapper JF, May DA (1998) The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with the NOAA polar-orbiting environmental satellites. J Geophys Res 103:27999–28012CrossRefGoogle Scholar
  22. Zhang HM, Reynolds RW, Lumpkin R, Molinari R, Arzayus K, Johnson M, Smith TM (2009) An integrated global observing system for sea surface temperature using satellites and in situ data: research to operations. Bull Amer Meteor Soc 90:31–38CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.ESTEC (EOP-SME), European Space AgencyNoordwijkThe Netherlands

Personalised recommendations