Advertisement

Anti-vascular Therapy for Brain Tumors

  • Florence M. Hofman
  • Thomas C. Chen
Chapter
Part of the Methods of Cancer Diagnosis, Therapy and Prognosis book series (HAYAT, volume 8)

Abstract

The formation of new blood vessels, a ­normal process in fetal development, wound healing and during the menstrual cycle, functions to provide expanding tissues with nutrients, oxygen, and waste removal. The extent of vasculature development defines the survival and growth of tissues. Tumor growth also depends on the expansion of the vasculature. Tumor cells can survive only within a specific distance from the blood vessels; beyond this point the cells become hypoxic and die (Hlatky et al. 2002). In the absence of a parallel expansion of the blood supply, the tumor will stop growing and remain dormant for years or die (Folkman 2007). Studies suggest that activation of the dormant tumor cells cause a change in the balance of pro- and anti-angiogenic factors present in the tumor microenvironment, triggering the blood vessels in the surrounding normal tissue to become activated and invade the tumor (angiogenesis) (Folkman 2007)

Keywords

Vascular Endothelial Growth Factor Focal Adhesion Kinase Endothelial Progenitor Cell Tumor Vasculature Epithelial Growth Factor Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Altieri, D.C. (2003) Validating survivin as a cancer therapeutic agent. Nat. Rev. Cancer 3:46–54PubMedCrossRefGoogle Scholar
  2. Bergers, G., and Benjamin, L.E. (2003) Tumorigenesis and the angiogenic switch. Nat. Rev. Cancer 3:401–410PubMedCrossRefGoogle Scholar
  3. Charalambous, C.C., Hofman, F.M., and Chen, T.C. (2005) Functional and phenotypic differences between glioblastoma multiforme-derived and normal human brain endothelial cells. J. Neurosurg. 102(4):699–705PubMedCrossRefGoogle Scholar
  4. Charalambous, C.C., Virrey, J.J., Kardosh, A., Jabbour, M.N., Qazi-Abdullah, L., Pen, L., Zidovetzki, R., Schonthal, A.H., Chen, T.C., and Hofman, F.M. (2007) Glioma-associated endothelial cells show evidence of replicative senescence. Exp. Cell Res. 313(6):1192–1202PubMedCrossRefGoogle Scholar
  5. Debatin, K.M., Wei, J., and Beltinger, C. (2008) Endothelial progenitor cells for cancer gene therapy. Gene. Ther. 15(10):780–786PubMedCrossRefGoogle Scholar
  6. Dudek, A.Z., Bodempudi, V., Welsh, B.W., Jasinski, P., Griffin, R.J., Milbauer, L., and Hebbel, R.P. (2007) Systemic inhibition of tumour angio­genesis by endothelial cell-based gene therapy. Br. J. Cancer 97(4):513–522PubMedCrossRefGoogle Scholar
  7. Dvorak, H.F. (2002) Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J. Clin. Oncol. 20(21):4368–4380PubMedCrossRefGoogle Scholar
  8. Effros, R.B. (2003) Replicative senescence: the final stage of memory T cell differentiation? Curr. HIV Res. 1:153–165PubMedCrossRefGoogle Scholar
  9. Fernando, N.T., Koch, M., Rothrock, C., Gollogly, L.K., D’Amore, P.A., Ryeom, S., and Yoon, S.S. (2008) Tumor escape from endogenous, extracellular matrix-associated angiogenesis inhibitors by up-regulation of multiple proangiogenic factors. Clin. Cancer Res. 14(5):1529–1539PubMedCrossRefGoogle Scholar
  10. Fischer, C., Jonckx, B., Mazzone, M., Zacchigna, S., Loges, S., Pattarini, L., Chorianopoulos, E., Liesenborghs, L., Koch, M., De Mol, M., Autiero, M., Wyns, S., Plaisance, S., Moons, L., van Rooijen, N., Giacca, M., Stassen, J.M., Dewerchin, M., Collen, D., and Carmeliet, P. (2007) Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell 131(3):463–475PubMedCrossRefGoogle Scholar
  11. Folkman, J. (2007) Angiogenesis: an organizing principle for drug discovery? Nat. Rev. Drug Disc. 6(4):273–286CrossRefGoogle Scholar
  12. Haskell, H., Natarajan, M., Hecker, T.P., Ding, Q., Stewart, J. Jr., Grammer, J.R., and Gladson, C.L. (2003) Focal adhesion kinase is expressed in the angiogenic blood vessels of malignant astrocytic tumors in vivo and promotes capillary tube formation of brain microvascular endothelial cells. Clin. Cancer Res. 9(6):2157–2165PubMedGoogle Scholar
  13. Hida, K., Hida, Y., Amin, D.N., Flint, A.F., Panigrahy, D., Morton, C.C., and Klagsbrun, M. (2004) Tumor-associated endothelial cells with cytogenetic abnormalities. Cancer Res. 64(22):8249–8255PubMedCrossRefGoogle Scholar
  14. Hirata, A., Ogawa, S., Kometani, T., Kuwano, T., Naito, S., Kuwano, M., and Ono, M. (2002) ZD1839 (Iressa) induces antiangiogenic effects through inhibition of epidermal growth factor receptor tyrosine kinase. Cancer Res. 62(9):2554–2560PubMedGoogle Scholar
  15. Hlatky, L., Hahnfeldt, P., and Folkman, J. (2002) Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn’t tell us. J. Nat. Cancer Inst. 94(12):883–893PubMedCrossRefGoogle Scholar
  16. Jansen, M., de Witt Hamer, P.C., Witmer, A.N., Troost, D., and van Noorden, C.J. (2004) Current perspectives on antiangiogenesis strategies in the treatment of malignant gliomas. Brain Res. 45(3):143–163CrossRefGoogle Scholar
  17. Joe, Y.A., Hong, Y.K., Chung, D.S., Yang, Y.J., Kang, J.K., Lee, Y.S., Chang, S.I., You, W.K., Lee, H., and Chung, S.I. (1999) Inhibition of human malignant glioma growth in vivo by human recombinant plasminogen kringles 1–3. Int. J. Cancer 82(5):694–699CrossRefGoogle Scholar
  18. Kerbel, R., and Folkman, J. (2002) Clinical translation of angiogenesis inhibitors. Nat. Rev. Cancer 2(10):727–739PubMedCrossRefGoogle Scholar
  19. Kragh, M., Quistorff, B., Tenan, M., Van Meir, E.G., and Kristjansen, P.E. (2002) Overexpression of thrombospondin-1 reduces growth and vascular index but not perfusion in glioblastoma. Cancer Res. 62(4):1191–1195PubMedGoogle Scholar
  20. Lee, A.S. (2007) GRP78 induction in cancer: therapeutic and prognostic implications. Cancer Res. 67:3496–3499PubMedCrossRefGoogle Scholar
  21. LoRusso, P.M., and Eder, J.P. (2008) Therapeutic potential of novel selective-spectrum kinase inhibitors in oncology. Expert Opin. Invest. Drugs 17(7):1013–1028CrossRefGoogle Scholar
  22. Ma, J., and Waxman, D.J. (2008) Combination of antiangiogenesis with chemotherapy for more effective cancer treatment. Mol. Cancer Ther. 7:3670–3684PubMedCrossRefGoogle Scholar
  23. McDonald, D.M., and Choyke, P.L. (2003) Imaging of angiogenesis: from microscope to clinic. Nat. Med. 9(6):713–725PubMedCrossRefGoogle Scholar
  24. Moore, X.L., Lu, J., Sun, L., Zhu, C.J., Tan, P., and Wong, M.C. (2004) Endothelial progenitor cells’ “homing” specificity to brain tumors. Gene. Ther. 11(10):811–818PubMedCrossRefGoogle Scholar
  25. Nolan, D.J., Ciarrocchi, A., Mellick, A.S., Jaggi, J.S., Bambino, K., Gupta, S., Heikamp, E., McDevitt, M.R., Scheinberg, D.A., Benezra, R., and Mittal, V. (2007) Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization. Genes Dev. 21(12):1546–1558PubMedCrossRefGoogle Scholar
  26. Pen, A., Moreno, M.J., Martin, J., and Stanimirovic, D.B. (2007) Molecular markers of extracellular matrix remodeling in glioblastoma vessels: microarray study of laser-captured glioblastoma vessels. GLIA 55(6):559–572PubMedCrossRefGoogle Scholar
  27. Rafii, D.C., Psaila, B., Butler, J., Jin, D.K., and Lyden, D. (2008) Regulation of vasculogenesis by platelet-mediated recruitment of bone marrow-derived cells. Arterioscler Thromb. Vasc. Biol. 28(2):217–222CrossRefGoogle Scholar
  28. Raghavan, R., Brady, M.L., Rodriguez-Ponce, M.I., Hartlep, A., Pedain, C., and Sampson, J.H. (2006) Convection enhanced delivery of therapeutics for brain disease, and its optimization. Neurosurg. Focus 20(4):1–13CrossRefGoogle Scholar
  29. Reardon, D.A., Nabors, L.B., Stupp, R., and Mikkelsen, T. (2008) Cilengitide: an integrin- targeting arginine-glycine-aspartic acid peptide with promising activity for glioblastoma multiforme. Expert Opin. Invest. Drugs 17(8):1225–1235CrossRefGoogle Scholar
  30. Rege, T.A., Fears, C.Y., and Gladson, C.L. (2005) Endogenous inhibitors of angiogenesis in malignant gliomas: nature’s antiangiogenic therapy. Neuro. Oncol. 7(2):106–121PubMedCrossRefGoogle Scholar
  31. Socinski, M.A. (2008) Bevacizumab as first-line treatment for advanced non-small cell lung cancer. Drugs Today 44(4):293–301PubMedCrossRefGoogle Scholar
  32. Stupp, R., Hegi, M.E., Gilbert, M.R., and Chakravarti, A. (2007) Chemoradiotherapy in malignant glioma: standard of care and future directions. J. Clin. Oncol. 25(26):4127–4136PubMedCrossRefGoogle Scholar
  33. Villares, G.J., Zigler, M., Wang, H., Melnikova, V.O., Wu, H., Friedman, R., Leslie, M.C., Vivas-Mejia, P.E., Lopez-Berestein, G., Sood, A.K., and Bar-Eli, M. (2008) Targeting melanoma growth and metastasis with systemic delivery of liposome-incorporated protease-activated receptor-1 small interfering RNA. Cancer Res. 68:9078–9086PubMedCrossRefGoogle Scholar
  34. Virrey, J.J., Guan, S., Li, W., Schonthal, A.H., Chen, T.C., and Hofman, F.M. (2008a) Increased survivin expression confers chemoresistance to tumor-associated endothelial cells. Am. J. Pathol. 173(2):575–585PubMedCrossRefGoogle Scholar
  35. Virrey, J.J., Dong, D., Stiles, C., Patterson, J.B., Pen, L., Ni, M., Schonthal, A.H., Chen, T.C., Hofman, F.M., and Lee, A.S. (2008b) Stress chaperone GRP78/BiP confers chemoresistance to tumor-associated endothelial cells. Mol. Cancer Res. 6(8):1268–1275PubMedCrossRefGoogle Scholar
  36. Volpert, O.V., Zaichuk, T., Zhou, W., Reiher, F., Ferguson, T.A., Stuart, P.M., Amin, M., and Bouck, N.P. (2002) Inducer-stimulated Fas targets activated endothelium for destruction by anti-angiogenic thrombospondin-1 and ­pigment epithelium-derived factor. Nat. Med. 8(4):349–357PubMedCrossRefGoogle Scholar
  37. Wen, P.Y., and Kesari, S. (2008) Malignant gliomas in adults. N. Engl. J. Med. 359(5):492–507PubMedCrossRefGoogle Scholar
  38. Wilhelm, S.M., Adnane, L., Newell, P., Villanueva, A., Llovet, J.M., and Lynch, M. (2008) Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol. Cancer Ther. 7(10):3129–3140PubMedCrossRefGoogle Scholar
  39. Zhou, Q., Guo, P., and Gallo, J.M. (2008) Impact of angiogenesis inhibition by sunitinib on tumor distribution of temozolomide. Clin. Cancer Res. 14(5):1540–1549PubMedCrossRefGoogle Scholar

Copyright information

© Springer Netherlands 2011

Authors and Affiliations

  1. 1.Department of Pathology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations