Advertisement

Magnetic Resonance Imaging of Brain Tumors Using Iron Oxide Nanoparticles

  • Matthew A. HuntEmail author
  • Edward A. Neuwelt
Chapter
Part of the Methods of Cancer Diagnosis, Therapy and Prognosis book series (HAYAT, volume 8)

Abstract

Iron oxide nanoparticles ­provide an alternative to gadolinium based contrast agents for use in magnetic resonance imaging of brain tumors. These nanoparticles have different biologic and imaging properties that provide complementary information about inflammation and subtle defects in the blood-brain barrier that are not seen with gadolinium as well as repeated serial imaging without the readministration of contrast agents. These particles can also be used with dynamic magnetic resonance imaging to measure perfusion properties of brain tumors without the confounding effects of blood brain barrier permeability on the measurements. Cellular labeling using iron oxide nanoparticles may allow for imaging of cellular trafficking in the brain.

Keywords

Pituitary Adenoma Iron Oxide Particle Magnetic Resonance Sequence Magnetic Resonance Perfusion Iron Oxide Core 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

REFERENCES

  1. Arbab, A.S., Yocum, G.T., Kalish, H., Jordan, E.K., Anderson, S.A., Khakoo, A.Y., Read, E.J., and Frank, J.A. (2004) Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood 104:1217–1223PubMedCrossRefGoogle Scholar
  2. Arbab, A.S., Rad, A.M., Iskander, A.S., Jafari-Khouzani, K., Brown, S.L., Churchman, J.L., Ding, G., Jiang, Q., Frank, J.A., Soltanian-Zadeh, H., and Peck, D.J. (2007) Magnetically-labeled sensitized splenocytes to identify glioma by MRI: a preliminary study. Magn. Reson. Med. 58:519–526PubMedCrossRefGoogle Scholar
  3. Bremer, C., Mustafa, M., Bogdanov, A., Jr., Ntziachristos, V., Petrovsky, A., and Weissleder, R. (2003) Steady-state blood volume measurements in experimental tumors with different angiogenic burdens a study in mice. Radiology 226:214–220PubMedCrossRefGoogle Scholar
  4. Cao, Y., Tsien, C.I., Nagesh, V., Junck, L., Ten Haken, R., Ross, B.D., Chenevert, T.L., and Lawrence, T.S. (2006) Survival prediction in high-grade gliomas by MRI perfusion before and during early stage of RT. Int. J. Radiat. Oncol. Biol. Phys. 64:876–885PubMedCrossRefGoogle Scholar
  5. Denis, M.C., Mahmood, U., Benoist, C., Mathis, D., and Weissleder, R. (2004) Imaging inflammation of the pancreatic islets in type 1 diabetes. Proc. Natl. Acad. Sci. USA 101:12634–12639PubMedCrossRefGoogle Scholar
  6. Enochs, W.S., Harsh, G., Hochberg, F., and Weissleder, R. (1999) Improved delineation of human brain tumors on MR images using a long-circulating, superparamagnetic iron oxide agent. J. Magn. Reson. Imaging 9:228–232PubMedCrossRefGoogle Scholar
  7. Harisinghani, M.G., Barentsz, J., Hahn, P.F., Deserno, W.M., Tabatabaei, S., van de Kaa, C.H., de la Rosette, J., and Weissleder, R. (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N. Engl. J. Med. 348:2491–2499PubMedCrossRefGoogle Scholar
  8. Hunt, M.A., Bago, A.G., and Neuwelt, E.A. (2005) Single-dose contrast agent for intraoperative MR imaging of intrinsic brain tumors by using ferumoxtran-10. AJNR Am. J. Neuroradiol. 26:1084–1088PubMedGoogle Scholar
  9. Jaffer, F.A., and Weissleder, R. (2005) Molecular imaging in the clinical arena. JAMA 293:855–862PubMedCrossRefGoogle Scholar
  10. Jung, C.W., and Jacobs, P. (1995) Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. Magn. Reson. Imaging 13:661–674PubMedCrossRefGoogle Scholar
  11. Keller, T.M., Michel, S.C.A., Frohlich, J., Fink, D., Caduff, R., Marincek, B., and Kubik-Huch, R.A. (2004) USPIO-enhanced MRI for preoperative staging of gynecological pelvic tumors: preliminary results. Eur. Radiol. 14:937–944PubMedCrossRefGoogle Scholar
  12. Kircher, M. F., Mahmood, U., King, R. S., Weissleder, R., and Josephson, L. (2003) A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Res. 63:8122–8125PubMedGoogle Scholar
  13. Knauth, M., Aras, N., Wirtz, C.R., Dorfler, A., Engelhorn, T., and Sartor, K. (1999) Surgically induced intracranial contrast enhancement: potential source of diagnostic error in intraoperative MR imaging. AJNR Am. J. Neuroradiol. 20:1547–1553PubMedGoogle Scholar
  14. Knauth, M., Egelhof, T., Roth, S.U., Wirtz, C.R., and Sartor, K. (2001a) Monocrystalline iron oxide nanoparticles: possible solution to the problem of surgically induced intracranial contrast enhancement in intraoperative MR imaging. AJNR Am. J. Neuroradiol. 22:99–102PubMedGoogle Scholar
  15. Knauth, M., Wirtz, C.R., Aras, N., and Sartor, K. (2001b) Low-field interventional MRI in neurosurgery: finding the right dose of contrast medium. Neuroradiology 43:254–258PubMedCrossRefGoogle Scholar
  16. Landry, R., Jacobs, P.M., Davis, R., Shenouda, M., and Bolton, W.K. (2005) Pharmacokinetic study of ferumoxytol: a new iron replacement therapy in normal subjects and hemodialysis patients. Am. J. Nephrol. 25:400–410PubMedCrossRefGoogle Scholar
  17. Moore, A., Marecos, E., Bogdanov, A., Jr., and Weissleder, R. (2000) Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model. Radiology 214:568–574PubMedGoogle Scholar
  18. Muldoon, L.L., Sandor, M., Pinkston, K.E., and Neuwelt, E.A. (2005) Imaging, distribution, and toxicity of superparamagnetic iron oxide magnetic resonance nanoparticles in the rat brain and intracerebral tumor. Neurosurgery 57:785–796PubMedCrossRefGoogle Scholar
  19. Murillo, T.P., Sandquist, C., Jacobs, P.M., Nesbit, G., Manninger, S., and Neuwelt, E.A. (2005) Imaging brain tumors with ferumoxtran-10, a nanoparticle magnetic resonance contrast agent. Therapy 2:871–882CrossRefGoogle Scholar
  20. Neuwelt, E.A., Weissleder, R., Nilaver, G., Kroll, R.A., Roman-Goldstein, S., Szumowski, J., Pagel, M.A., Jones, R. S., Remsen, L.G., McCormick, C.I., Shannon, E.M., and Muldoon, L.L. (1994) Delivery of virus-sized iron oxide particles to rodent CNS neurons. Neurosurgery 34:777–784PubMedCrossRefGoogle Scholar
  21. Neuwelt, E.A., Varallyay, P., Bago, A.G., Muldoon, L.L., Nesbit, G., and Nixon, R. (2004) Imaging of iron oxide nanoparticles by MR and light microscopy in patients with malignant brain tumours. Neuropathol. Appl. Neurobiol. 30:456–471PubMedCrossRefGoogle Scholar
  22. Neuwelt, E.A., Varallyay, C.G., Manninger, S., Solymosi, D., Haluska, M., Hunt, M.A., Nesbit, G., Stevens, A., Jerosch-Herold, M., Jacobs, P.M., and Hoffman, J.M. (2007) The potential of ferumoxytol nanoparticle magnetic resonance imaging, perfusion, and angiography in central nervous system malignancy: a pilot study. Neurosurgery 60:601–611; discussion 611–602PubMedCrossRefGoogle Scholar
  23. Raynal, I., Prigent, P., Peyramaure, S., Najid, A., Rebuzzi, C., and Corot, C. (2004) Macrophage endocytosis of superparamagnetic iron oxide nanoparticles: mechanisms and comparison of ferumoxides and ferumoxtran-10. Invest. Radiol. 39:56–63PubMedCrossRefGoogle Scholar
  24. Remsen, L.G., McCormick, C.I., Roman-Goldstein, S., Nilaver, G., Weissleder, R., Bogdanov, A., Hellstrom, I., Kroll, R.A., and Neuwelt, E.A. (1996) MR of carcinoma-specific monoclonal antibody conjugated to monocrystalline iron oxide nanoparticles: the potential for noninvasive diagnosis. AJNR Am. J. Neuroradiol. 17:411–418PubMedGoogle Scholar
  25. Taschner, C.A., Wetzel, S.G., Tolnay, M., Froehlich, J., Merlo, A., and Radue, E.W. (2005) Characteristics of ultrasmall superparamagnetic iron oxides in patients with brain tumors. AJR Am. J. Roentgenol. 185:1477–1486PubMedCrossRefGoogle Scholar
  26. Varallyay, P., Nesbit, G., Muldoon, L.L., Nixon, R.R., Delashaw, J., Cohen, J.I., Petrillo, A., Rink, D., and Neuwelt, E.A. (2002) Comparison of two superparamagnetic viral-sized iron oxide particles ferumoxides and ferumoxtran-10 with a gadolinium chelate in imaging intracranial tumors. AJNR Am. J. Neuroradiol. 23:510–519PubMedGoogle Scholar
  27. Wirtz, C.R., Knauth, M., Staubert, A., Bonsanto, M.M., Sartor, K., Kunze, S., and Tronnier, V.M. (2000) Clinical evaluation and follow-up results for intraoperative magnetic resonance imaging in neurosurgery. Neurosurgery 46:1112–1120; discussion 1120–1112PubMedCrossRefGoogle Scholar
  28. Zimmer, C., Wright, S.C., Jr., Engelhardt, R.T., Johnson, G.A., Kramm, C., Breakefield, X.O., and Weissleder, R. (1997) Tumor cell endocytosis imaging facilitates delineation of the glioma–brain interface. Exp. Neurol. 143:61–69PubMedCrossRefGoogle Scholar

Copyright information

© Springer Netherlands 2011

Authors and Affiliations

  1. 1.Department of NeurosurgeryOregon Health and Science UniversityPortlandUSA

Personalised recommendations