Brain Tumor Imaging: European Association of Nuclear Medicine Procedure Guidelines

  • Thierry Vander Borght
  • Susanne Asenbaum
  • Peter Bartenstein
  • Christer Halldin
  • Özlem Kapucu
  • Koen Van Laere
  • Andrea Varrone
  • Klaus Tatsch
Chapter
Part of the Methods of Cancer Diagnosis, Therapy and Prognosis book series (HAYAT, volume 8)

Abstract

These guidelines summarize the views of the European Association of Nuclear Medicine (EANM) Neuroimaging Committee (ENC). The purpose of the guidelines is to assist nuclear medicine practitioners in recommending, performing, interpreting, and reporting the results of brain tumor imaging using 18-fluoro-2-deoxyglucose-PET (FDG-PET) as well as radiolabeled amino acid analogues SPECT or PET. The aim is to help in achieving a high quality standard of such functional imaging procedures to increase their diagnostic impact in neuroonco­logical practice. The present document is largely based on the EANM guidelines that have been published for FDG-PET (Bartenstein et al. 2002) and labeled amino acid analogues imaging (Vander Borght et al. 2006). It also includes an update in the light of the advances in the PET technology and the introduction of hybrid PET-CT systems, which will be part of the updated guidelines for FDG-PET produced by the ENC. The information provided should be taken in the context of local conditions and regulations.

Keywords

Normal Brain Tissue Label Amino Acid Meet Uptake Amino Acid Analogue Viable Tumor Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bartenstein, P., Asenbaum, S., Catafau, A., Halldin, C., Pilowski, L., Pupi, A., and Tatsch, K. (2002) European Association of Nuclear Medicine procedure guidelines for brain imaging using [(18)F]FDG. Eur. J. Nucl. Med. Mol. Imaging 29:BP43–BP48PubMedGoogle Scholar
  2. Brock, C.S., Young, H., O’Reilly, S.M., Matthews, J., Osman, S., Evans, H., Newlands, E.S., and Price, P.M. (2000) Early evaluation of tumour metabolic response using [18F]fluorodeoxyglucose and positron emission tomography: a pilot study following the phase II chemotherapy schedule for temozolomide in recurrent high-grade gliomas. Br. J. Cancer 82:608–615PubMedCrossRefGoogle Scholar
  3. Chen, W.P., Matsunari, I., Noda, A., Yanase, D., Yajima, K., Takeda, N., Yamada, M., Minoshima, S., and Nishimura, S (2005) Rapid scanning protocol for brain (18)F-FDG PET: a validation study. J. Nucl. Med. 46:1633–1641PubMedCrossRefGoogle Scholar
  4. Cook, G.J., Maisey, M.N., and Fogelman, I. (1999) Normal variants, artefacts and interpretative pitfalls in PET imaging with 18-fluoro-2-deoxyglucose and carbon-11 methionine. Eur. J. Nucl. Med. 26:1363–1378PubMedCrossRefGoogle Scholar
  5. Delbeke, D., Meyerowitz, C., Lapidus, R.L., Maciunas, R.J., Jennings, M.T., Moots, P.L., and Kessler, R.M. (1995) Optimal cutoff levels of F-18 fluorodeoxyglucose uptake in the differentiation of low-grade from high-grade brain tumors with PET. Radiology 195:47–52PubMedGoogle Scholar
  6. Delbeke, D., Coleman, R.E., Guiberteau, M.J., Brown, M.L., Royal, H.D., Siegel, B.A., Townsend, D.W., Berland, L.L., Parker, J.A., Zubal, G., and Cronin, V. (2006) Procedure guideline for SPECT/CT imaging 1.0. J. Nucl. Med. 47:1227–1234PubMedGoogle Scholar
  7. Floeth, F.W., Sabel, M., Stoffels, G., Pauleit, D., Hamacher, K., Steiger, H.J., and Langen, K.J. (2008) Prognostic value of 18F-fluoroethyl-L-tyrosine PET and MRI in small nonspecific incidental brain lesions. J. Nucl. Med. 49:730–737PubMedCrossRefGoogle Scholar
  8. Galldiks, N., Kracht, L.W., Burghaus, L., Thomas, A.,Jacobs, A.H., Heiss, W.D., and Herholz, K. (2006) Use of 11C-methionine PET to monitor the effects of temozolomide chemotherapy in malignant gliomas. Eur. J. Nucl. Med. Mol. Imaging 33:516–524PubMedCrossRefGoogle Scholar
  9. Kaschten, B., Stevenaert, A., Sadzot, B., Deprez, M., Degueldre, C., Del Fiore, G., Luxen, A., and Reznik, M. (1998) Preoperative evaluation of 54 gliomas by PET with fluorine-18-fluorodeoxyglucose and/or carbon-11-methionine. J. Nucl. Med. 39:778–785PubMedGoogle Scholar
  10. Kracht, L.W., Friese, M., Herholz, K., Schroeder, R., Bauer, B., Jacobs, A., and Heiss, W.D. (2003) Methyl-[11C]- l-methionine uptake as measured by positron emission tomography correlates to microvessel density in patients with glioma. Eur. J. Nucl. Med. Mol. Imaging 30:868–873PubMedCrossRefGoogle Scholar
  11. Kracht, L.W., Miletic, H., Busch, S., Jacobs, A.H., Voges, J., Hoevels, M., Klein, J.C., Herholz, K., and Heiss, W.D. (2004) Delineation of brain tumor extent with [11C]L-methionine positron emission tomography: local comparison with stereotactic histopathology. Clin. Cancer Res. 10:7163–7170PubMedCrossRefGoogle Scholar
  12. Kuwert, T., Morgenroth, C., Woesler, B., Matheja, P.,Palkovic, S., Vollet, B., Samnick, S., Maasjosthusmann, U., Lerch, H., Gildehaus, F.J., Wassmann, H., and Schober, O. (1996) Uptake of iodine-123-alpha-methyl tyrosine by gliomas and non-neoplastic brain lesions. Eur. J. Nucl. Med. 23:1345–1353PubMedCrossRefGoogle Scholar
  13. Kuwert, T., Woesler, B., Morgenroth, C., Lerch, H., Schafers, M., Palkovic, S., Matheja, P., Brandau, W., Wassmann, H., and Schober, O. (1998) Diagnosis of recurrent glioma with SPECT and iodine-123-alpha-methyl tyrosine. J. Nucl. Med. 39:23–27PubMedGoogle Scholar
  14. Lahoutte, T., Caveliers, V., Franken, P.R., Bossuyt, A., Mertens, J., and Everaert, H. (2002) Increased tumor uptake of 3-(123)I-Iodo-L-alpha-methyltyrosine after preloading with amino acids: an in vivo animal imaging study. J. Nucl. Med. 43:1201–1206PubMedGoogle Scholar
  15. Langen, K.J., Pauleit, D., and Coenen, H.H. (2002) 3-[(123)I]Iodo-alpha-methyl-L-tyrosine: uptake mechanisms and clinical applications. Nucl. Med. Biol. 29:625–631PubMedCrossRefGoogle Scholar
  16. Levivier, M., Massager, N., Wikler, D., Lorenzoni, J.,Ruiz, S., Devriendt, D., David, P., Desmedt, F., Simon, S., Van Houtte, P., Brotchi, J., and Goldman, S. (2004) Use of stereotactic PET images in dosimetry planning of radiosurgery for brain tumors: clinical experience and proposed classification. J. Nucl. Med. 45:1146–1154PubMedGoogle Scholar
  17. Mehrkens, J.H., Popperl, G., Rachinger, W., Herms, J.,Seelos, K., Tatsch K., Tonn, J.C., and Kreth, F.W. (2008) The positive predictive value of O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET in the diagnosis of a glioma recurrence after multimodal treatment. J. Neurooncol. 88:27–35PubMedCrossRefGoogle Scholar
  18. Moulin-Romsee, G., D’Hondt, E., de Groot, T., Goffin, J., Sciot, R., Mortelmans, L., Menten, J.,Bormans, G., and Van Laere, K. (2007) Non-invasive grading of brain tumours using dynamic amino acid PET imaging: does it work for 11C-methionine? Eur. J. Nucl. Med. Mol. Imaging 34:2082–2087PubMedCrossRefGoogle Scholar
  19. Pauleit, D., Floeth, F., Herzog, H., Hamacher, K., Tellmann, L., Muller, H.W., Coenen, H.H., and Langen, K.J. (2003) Whole-body distribution and dosimetry of O-(2-[18F]fluoroethyl)-L-tyrosine. Eur. J. Nucl. Med. Mol. Imaging 30:519–524PubMedCrossRefGoogle Scholar
  20. Pauleit, D., Floeth, F., Hamacher, K., Riemenschneider, M.J., Reifenberger, G., Muller, H.W., Zilles, K., Coenen, H.H., and Langen, K.J. (2005) O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 128:678–687PubMedCrossRefGoogle Scholar
  21. Pirotte, B., Goldman, S., Massager, N., David, P., Wikler, D., Vandesteene, A., Salmon, I., Brotchi, J., and Levivier, M. (2004) Comparison of 18F-FDG and 11C-methionine for PET-guided stereotactic brain biopsy of gliomas. J. Nucl. Med. 45:1293–1298PubMedGoogle Scholar
  22. Popperl, G., Kreth, F.W., Mehrkens, J.H., Herms, J.,Seelos, K., Koch, W., Gildehaus, F.J., Kretzschmar, H.A., Tonn, J.C., and Tatsch, K. (2007) FET PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading. Eur. J. Nucl. Med. Mol. Imaging 34:1933–1942PubMedCrossRefGoogle Scholar
  23. Schmidt, D., Langen, K.J., Herzog, H., Wirths, J.,Holschbach, M., Kiwit, J.C., Ziemons, K., Coenen, H.H., and Muller-Gartner, H. (1997) Whole-body kinetics and dosimetry of L-3–123I-iodo-alpha-methyltyrosine. Eur. J. Nucl. Med. 24:1162–1166PubMedGoogle Scholar
  24. Spence, A.M., Muzi, M., Graham, M.M., O’Sullivan, F.,Krohn, K.A., Link, J.M., Lewellen, T.K., Lewellen, B., Freeman, S.D., Berger, M.S., and Ojemann, G.A. (1998) Glucose metabolism in human malignant gliomas measured quantitatively with PET, 1-[C-11]glucose and FDG: analysis of the FDG lumped constant. J. Nucl. Med. 39:440–448PubMedGoogle Scholar
  25. Spence, A.M., Muzi, M., Mankoff, D.A., O’Sullivan, S.F., Link, J.M., Lewellen, T.K., Lewellen, B., Pham, P., Minoshima, S., Swanson, K., and Krohn, K.A. (2004) 18F-FDG PET of gliomas at delayed intervals: improved distinction between tumor and normal gray matter. J. Nucl. Med. 45:1653–1659PubMedGoogle Scholar
  26. Van Laere, K., Ceyssens, S., Van Calenbergh, F., de Groot, T., Menten, J., Flamen, P., Bormans, G., and Mortelmans, L. (2005) Direct comparison of 18F-FDG and 11C-methionine PET in suspected recurrence of glioma: sensitivity, inter-observer variability and prognostic value. Eur. J. Nucl. Med. Mol. Imaging 32:39–51PubMedCrossRefGoogle Scholar
  27. Vander Borght, T., Asenbaum, S., Bartenstein, P., Halldin, C., Kapucu, O., Van Laere, K., Varrone, A., and Tatsch, K. (2006) EANM procedure guidelines for brain tumour imaging using labelled amino acid analogues. Eur. J. Nucl. Med. Mol. Imaging 33:1374–1380PubMedCrossRefGoogle Scholar
  28. Vees, H., Senthamizhchelvan, S., Miralbell, R., Weber, D.C., Ratib, O., and Zaidi, H. (2009) Assessment of various strategies for 18F-FET PET-guided delineation of target volumes in high-grade glioma patients. Eur. J. Nucl. Med. Mol. Imaging 36:182–193PubMedCrossRefGoogle Scholar
  29. Weber, W.A., Dick, S., Reidl, G., Dzewas, B., Busch, R.,Feldmann, H.J., Molls, M., Lumenta, C.B., Schwaiger, M., and Grosu, A.L. (2001) Correlation between postoperative 3-[(123)I]iodo-L-alpha-methyltyrosine uptake and survival in patients with gliomas. J. Nucl. Med. 42:1144–1150PubMedGoogle Scholar
  30. Weber, D.C., Zilli, T., Buchegger, F., Casanova, N., Haller, G., Rouzaud, M., Nouet, P., Dipasquale, G.,Ratib, O., Zaidi, H., Vees, H., and Miralbell, R.(2008) [(18)F]Fluoroethyltyrosine- positron emission tomography-guided radiotherapy for high-grade glioma. Radiat. Oncol. 3:44PubMedCrossRefGoogle Scholar

Copyright information

© Springer Netherlands 2011

Authors and Affiliations

  • Thierry Vander Borght
    • 1
  • Susanne Asenbaum
    • 1
  • Peter Bartenstein
    • 1
  • Christer Halldin
    • 1
  • Özlem Kapucu
    • 1
  • Koen Van Laere
    • 1
  • Andrea Varrone
    • 1
  • Klaus Tatsch
    • 1
  1. 1.Nuclear Medicine Division, Mont-Godinne Medical CentreUniversite Catholique de LouvainYvoirBelgium

Personalised recommendations