Combined Use of [F-18]Fluorodeoxyglucose and [C-11]Methionine in 45 PET-Guided Stereotactic Brain Biopsies

  • Benoit PirotteEmail author
Part of the Methods of Cancer Diagnosis, Therapy and Prognosis book series (HAYAT, volume 8)


To compare the contribution of the tracers [C-11]methionine (met) and [f-18]-fluorodeoxyglucose (fdg) in positron emission tomography (pet)-guided stereotactic brain biopsy. Forty-five patients underwent combined Met-Pet-, fdg-pet- associated with computerized tomography (ct)- or magnetic resonance (mr)-guided stereotactic biopsy. The patients presented a lesion that was in close relationship with the cortical or subcortical grey matter. Met-pet and fdg-pet images were analyzed to determine which tracer offers the best information to guide at least one stereotactic biopsy trajectory. Histological diagnosis was obtained in all patients (39 tumors / 6 non tumor lesions). All tumors were biopsied under pet-guidance. Fdg was used for target definition when tumor uptake was higher than in the grey matter (18 tumors). Met was used for target definition when fdg uptake was absent or equivalent to that of the grey matter (21 tumors). Parallel review of all histological and imaging data showed that all tumors had an area of abnormal Met uptake and 33 of them had an abnormal fdg uptake. All 6 non tumor lesions had no Met uptake and were biopsied under ct- or mr-guidance only. All tumor trajectories had an area of abnormal met uptake; all non-diagnostic trajectories in tumors had no abnormal met uptake. When fdg shows limitations for target selection, met is a good alternative, because of its high specificity in tumors. Moreover, in the perspective of a single-tracer procedure and regardless of fdg uptake, met is a better choice for the pet-guidance of neurosurgical procedures.


Positron Emission Tomography Anaplastic Astrocytoma Target Selection Meet Uptake Subcortical Grey Matter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Black, P.M. (1991) Brain tumors (second of two parts). N. Engl. J. Med. 324:1555–1564PubMedCrossRefGoogle Scholar
  2. Chandrasoma, P.T., Smith, M.M., and Apuzzo, M.L.J. (1989) Stereotactic biopsy in the diagnosis of brain masses: comparison of results of biopsy and resected surgical specimen. Neurosurgery 24:160–165PubMedCrossRefGoogle Scholar
  3. Choksey, M.S., Valentine, A., Shawdon, H., Freer, C.E.R., and Lindsay, K.D. (1989) Computed tomography in the diagnosis of malignant brain tumours: do all patients require biopsy ? J. Neurol. Neurosurg. Psychiatry 52:821–825PubMedCrossRefGoogle Scholar
  4. Chung, J.K., Kim, Y.K., Kim, S.K., Lee, Y.J.,Paek, S., Yeo, J.S., Jeong, J.M., Lee, D.S., Jung, H.W., and Lee, M.C. (2002) Usefulness of 11C-methionine PET in the evaluation of brain lesions that are hypo- or isometabolic on 18F-FDG-PET. Eur. J. Nucl. Med. Mol. Imaging 29:176–182PubMedCrossRefGoogle Scholar
  5. Coleman, R.E., Hoffman, J.M., Hanson, M.W., Sostman, H.D., and Schold, S.C. (1991) Clinical application of PET for the evaluation of brain tumors. J. Nucl. Med. 32:616–622PubMedGoogle Scholar
  6. De Witte, O., Levivier, M., Violon, P., Salmon, I., Damhaut, P., Wikler, D. Jr., Hildebrand, J., Brotchi, J., and Goldman, S. (1996) Prognostic value of positron emission tomography with [18F]fluoro-2-deoxy-D-glucose in the low-grade glioma. Neurosurgery 39:470–476PubMedGoogle Scholar
  7. De Witte, O., Levivier, M., Violon, P., Brotchi, J., and Goldman, S. (1998) Quantitative imaging study of extent of surgical resection and prognosis of malignant astocytomas. Neurosurgery 43:398–399PubMedCrossRefGoogle Scholar
  8. De Witte, O., Lefranc, F., Levivier, M., Salmon, I., Brotchi, J., and Goldman, S. (2000) FDG-PET as a prognostic factor in high-grade astrocytoma. J. Neurooncol. 49:157–163PubMedCrossRefGoogle Scholar
  9. De Witte, O., Goldberg, I., Wikler, D., Rorive, S., Damhaut, P., Monclus, M., Salmon, I., Brotchi, J., and Goldman, S. (2001) Positron emission tomography with injection of methionine as a prognostic factor in glioma. J. Neurosurg. 95:746–750PubMedCrossRefGoogle Scholar
  10. Delbeke, D., Meyerowitz, C., Lapidus, R.L., Maciunas, R.J., Jennings, M.T., Moots, P.L., and Kessler, R.M. (1995) Optimal cutoff levels of F-18 fluorodeoxyglucose uptake in the differentiation of low-grade from high-grade brain tumors with PET. Radiology 195:47–52PubMedGoogle Scholar
  11. Derlon, J.M., Petit-Taboue, M.C., Chapon, F., Beaudouin, V., Noel, M.H., Creveuil, C., Courtheoux, P., and Houtteville, J.-P. (1997) The in vivo metabolic pattern of low-grade brain gliomas: a positron emission tomographic study using 18F-fluorodeoxyglucose and 11C-L-methylmethionine. Neurosurgery 40:276–288PubMedCrossRefGoogle Scholar
  12. Derlon, J.M., Chapon, F., Noel, M.H., Khouri, S., Benali, K., Petit-Taboue, M.C., Houtteville, J.-P., Chajari, M.H., and Bouvard, G. (2000) Non-invasive grading of oligodendrogliomas: correlation between in vivo metabolic pattern and histopathology. Eur. J. Nucl. Med. 27:778–787PubMedCrossRefGoogle Scholar
  13. Feiden, W., Steude, U., Bise, K., and Gündisch, O. (1991) Accuracy of stereotactic brain tumor biopsy: comparison of the histologic findings in biopsy cylinders and resected tumor tissue. Neurosurg. Rev. 14:51–56PubMedGoogle Scholar
  14. Glantz, M.J., Burger, P.C., Herndon, II J.E., Friedman, A.H., Cairncross, J.G., Vick, N.A., and Schold, Jr. S.C. (1991a) Influence of the type of surgery on the histological diagnosis in patients with anaplastic gliomas. Neurology 41:1741–1744PubMedCrossRefGoogle Scholar
  15. Glantz, M.J., Hoffman, J.M., Coleman, R.E., Friedman, A.H., Hanson, M.W., Burger, P.C., Herndon, II J.E., Meisler, W.J., and Schold, Jr. S.C. (1991b) Identification of early recurrence of primary central nervous system tumors by [18F]fluorodeoxyglucose positron emission tomography. Ann. Neurol. 29:347–355PubMedCrossRefGoogle Scholar
  16. Goldman, S., Levivier, M., Pirotte, B., Brucher, J.M., Wikler, D., Damhaut, P., Stanus, E., Brotchi, J., and Hildebrand, J. (1996) Regional glucose metabolism and histopathology of gliomas. A study based on positron emission tomography-guided stereotactic biopsy. Cancer 78:1098–1106PubMedCrossRefGoogle Scholar
  17. Goldman, S., Levivier, M., Pirotte, B., Brucher, J.M., Wikler, D., Damhaut, P., Dethy, S., Brotchi, J., and Hildebrand, J. (1997) Regional methionine and glucose metabolism in gliomas: a comparative study on PET-guided stereotactic biopsy. J. Nucl. Med. 38:1–4Google Scholar
  18. Inoue, T., Shibasaki, T., Oriuchi, N., Aoyagi, K., Tomiyoshi, K., Amano, S., Mikuni, M., Ida, I., Aoki, J., and Endo, K. (1999) 18F alpha-methyl tyrosine PET studies in patients with brain tumors. J. Nucl. Med. 40:399–405PubMedGoogle Scholar
  19. Kaschten, B., Stevenaert, A., Sadzot, B., Deprez, M., Degueldre, C., Del Fiore, G., Luxen, A., and Reznik, M. (1998) Preoperative evaluation of 54 gliomas by PET with fluorine- 18-fluorodeoxyglucose and/or carbon-11-methionine. J. Nucl. Med. 39:778–785PubMedGoogle Scholar
  20. Kelly, P.J., Daumas-Duport, C., Kispert, D.B., Kall, B.A., Scheithauer, B.W., and Illig, J.J. (1987) Imaging-based stereotactic serial biopsies in untreated intracranial glial neoplasms. J. Neurosurg. 66:865–874PubMedCrossRefGoogle Scholar
  21. Kleihues, P., Burger, P.C., and Scheithauer, B.W. (1993) The new WHO classification of brain tumors. Brain Pathol. 3:255–268PubMedCrossRefGoogle Scholar
  22. Levivier, M., Goldman, S., Bidaut, L.M., Luxen, A., Stanus, E., Przedborski, S., Balériaux, D., Hildebrand, J., and Brotchi, J. (1992) Positron emission tomography-guided stereotactic brain biopsy. Neurosurgery 31:792–797PubMedCrossRefGoogle Scholar
  23. Levivier, M., Goldman, S., Pirotte, B., Brucher, J.M., Balériaux, D., Luxen, A., Hildebrand, J., and Brotchi, J. (1995) Diagnostic yield of stereotactic brain biopsy guided by positron emission tomography with [18F]fluorodeoxyglucose. J. Neurosurg. 82:445–452PubMedCrossRefGoogle Scholar
  24. Levivier, M., Wikler, D., Goldman, S., Pirotte, B., and Brotchi, J. (1999) Positron emission tomography in stereotactic conditions as a functional imaging technique for neurosurgical guidance. In: Alexander, III E.B., Maciunas, R.M. (eds) Advanced neurosurgical navigation. Thieme Medical Publishers, Inc., New York, pp 85–99Google Scholar
  25. Levivier, M., Wikler, D., Goldman, S., David, P., Metens, T., Massager, N., Gerosa, M., Devriendt, D., Desmedt, F., Simon, S., Van Houtte, P., and Brotchi, J. (2000) Integration of the metabolic data of positron emission tomography in the dosimetry planning of radiosurgery with the gamma knife: early experience with brain tumors. J. Neurosurg. 93:233–238PubMedGoogle Scholar
  26. Levivier, M., Wikler, D. Jr., Massager, N., David, P., Devriendt, D., Lorenzoni, J., Pirotte, B., Desmedt, F., Simon, S. Jr., Goldman, S., Van Houtte, P., and Brotchi, J. (2002) The integration of metabolic imaging in stereotactic procedures including radiosurgery: a review. J. Neurosurg. 97:542–550PubMedCrossRefGoogle Scholar
  27. Massager, N., David, P., Goldman, S., Pirotte, B., Wikler, D., Salmon, I., Nagy, N., Brotchi, J., and Levivier, M. (2000) Combined MRI – and PET – guided stereotactic biopsy in brainstem mass lesions: diagnostic yield in a series of 30 patients. J. Neurosurg. 93:951–957PubMedCrossRefGoogle Scholar
  28. Mineura, K., Sasajima, T., Kowada, M., Uesaka, Y., and Shishido, F. (1991) Innovative approach in the diagnosis of gliomatosis cerebri using carbon-11-L-methionine positron emission tomography. J. Nucl. Med. 32:726–728PubMedGoogle Scholar
  29. Patronas, N.J., Brooks, R.A., DeLaPaz, R.L., Smith, B.H., Kornblith, P.L., and Di Chiro, G.(1983) Glycolytic rate (PET) and contrast enhancement (CT) in human cerebral gliomas. AJNR Am. J. Neuroradiol. 4:533–535PubMedGoogle Scholar
  30. Paulus, W., and Peiffer, J. (1989) Intratumoral histologic heterogeneity of gliomas. A quantitative study. Cancer 64:442–447PubMedCrossRefGoogle Scholar
  31. Pirotte, B., Goldman, S., Salzberg, S., Wikler, D., David, P., Vandesteene, A., Van Bogaert, P., Salmon, I., Brotchi, J., and Levivier, M. (2003) Combined positron emission tomography and magnetic resonance imaging for the planning of stereotactic brain biopsies in children: experience in 9 cases. Pediatr. Neurosurg. 38:146–155PubMedCrossRefGoogle Scholar
  32. Pirotte, B., Goldman, S., Massager, N., David, P., Wikler, D., Vandesteene, A., Salmon, I., Brotchi, J.,and Levivier, M. (2004) Comparison of 18F-FDG and 11C-methionine for PET-guided stereotactic brain biopsy of gliomas. J. Nucl. Med. 45:1293–8PubMedGoogle Scholar
  33. Pirotte, B., Goldman, S., Van Bogaert, P., David, P., Wikler, D., Rorive, S., Brotchi, J., and Levivier, M. (2005) Integration of [11C]methionine-positron emission tomographic and magnetic resonance imaging for image-guided surgical resection of infiltrative low-grade brain tumors in children. Neurosurgery 57:128–139PubMedCrossRefGoogle Scholar
  34. Weber, W.A., Wester, H.J., Grosu, A.L., Herz, M.,Dzewas, B., Feldmann, H.J., Molls, M., Stocklin, G., and Schwaiger, M. (2000) O-(2-[18F]fluoroethyl)-L-tyrosine and L-[methyl- 11C]methionine uptake in brain tumours: initial results of a comparative study. Eur. J. Nucl. Med. 27:542–549PubMedCrossRefGoogle Scholar
  35. Wienhard, K., Herholz, K., Coenen, H.H., Rudolf, J., Kling, P., Stocklin, G., and Heiss, W.D. (1991) Increased amino acid transport into brain tumors measured by PET of L-(2- 18F) fluorotyrosine. J. Nucl. Med. 32:1338–1346PubMedGoogle Scholar
  36. Wong, T.Z., Van der Westhuizen, G.J., and Coleman, R.E. (2002) Positron emission tomography imaging of brain tumors. Neuroimag. Clin. N. Am. 12:615–626PubMedCrossRefGoogle Scholar

Copyright information

© Springer Netherlands 2011

Authors and Affiliations

  1. 1.Department of Neurosurgery, Erasme HospitalUniversite Libre de BruxellesBrusselsBelgium

Personalised recommendations