Advertisement

Clinical Evaluation of Primary Brain Tumor: O-(2-[18F]Fluorethyl)-L-Tyrosine Positron Emission Tomography

  • Matthias WeckesserEmail author
  • Karl-Josef Langen
Chapter
Part of the Methods of Cancer Diagnosis, Therapy and Prognosis book series (HAYAT, volume 8)

Abstract

Radiolabeled amino acids have an established role in the diagnosis of brain tumors. The most common imaging technique is PET using [11C]methionine (MET). This approach however is limited by the short half life of 11C, preventing tracer distribution to PET centers without cyclotron.Recently, O-(2-[18F]fluorethyl)-L-tyrosine (FET) has been introduced which can be distributed easily. This tracer can be used to detect and delineate primary and recurrent tumors with high accuracy. The molecular information can help in targeting biopsy, planning surgery or radiotherapy and differentiating radiation necrosis from recurrent tumors. The low accuracy of amino acids in general in assessing grade of malignancy can be increased with FET by dynamic data acquisition: High grade tumors tend to exhibit an early peak in tumor/non-tumor contrast, which is followed by a decline whereas low grade tumors show a steadily increasing contrast with time. In conclusion, FET PET offers supplementary information to MRI in many clinical problems.

Keywords

Positron Emission Tomography High Grade Tumor Acute Disseminate Encephalomyelitis Dysembryoplastic Neuroepithelial Tumor Blood Pool Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

REFERENCES

  1. Floeth, F.W., Pauleit, D., Sabel, M., Reifenberger, G., Stoffels, G., Stummer, W., Rommel, F., Hamacher, K., and Langen, K.J. (2006) 18F-FET PET differentiation of ring-enhancing brain lesions. J. Nucl. Med. 47:776–782PubMedGoogle Scholar
  2. Hamacher, K., and Coenen, H.H. (2002) Efficient routine production of the F-18-labelled amino acid O-(2-[F-18]fluoroethyl)-L-tyrosine. Appl. Radiat. Isotopes 57:853–856PubMedCrossRefGoogle Scholar
  3. Heiss, P., Mayer, S., Herz, M., Wester, H.J., Schwaiger, M., and Senekowitsch-Schmidtke, R. (1999) Investigation of transport mechanism and uptake kinetics of O-(2-[18F]fluoroethyl)-L-tyrosine in vitro and in vivo. J. Nucl. Med. 40:1367–1373PubMedGoogle Scholar
  4. Jager, P.L., Vaalburg, W., Pruim, J., de Vries, E.G., Langen, K.J., and Piers, D.A. (2001) Radiolabeled amino acids: basic aspects and clinical applications in oncology. J. Nucl. Med. 42:432–445PubMedGoogle Scholar
  5. Langen, K.J., Jarosch, M., Muhlensiepen, H., Hamacher, K., Broer, S., Jansen, P., Zilles, K., and Coenen, H.H. (2003) Comparison of fluorotyrosines and methionine uptake in F98 rat gliomas. Nucl. Med. Biol. 30:501–508PubMedCrossRefGoogle Scholar
  6. Messing-Junger, A.M., Floeth, F.W., Pauleit, D., Reifenberger, G., Willing, R., Gartner, J., Coenen, H.H., and Langen, K.J. (2002) Multimodal target point assessment for stereotactic biopsy in children with diffuse bithalamic astrocytomas. Childs Nerv. Syst. 18:445–449PubMedCrossRefGoogle Scholar
  7. Pauleit, D., Floeth, F., Hamacher, K., Riemenschneider, M.J., Reifenberger, G., Muller, H.W., Zilles, K., Coenen, H.H., and Langen, K.J. (2005) O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 128:678–687PubMedCrossRefGoogle Scholar
  8. Pöpperl, G., Gotz, C., Rachinger, W., Gildehaus, F.J., Tonn, J.C., and Tatsch, K. (2004) Value of O-(2-[18F]fluoroethyl)-L-tyrosine PET for the diagnosis of recurrent glioma. Eur. J. Nucl. Med. Mol. Imaging 31:1464–1470PubMedCrossRefGoogle Scholar
  9. Rachinger, W., Goetz, C., Pöpperl, G., Gildehaus, F.J., Kreth, F.W., Holtmannspotter, M., Herms, J., Koch, W., Tatsch, K., and Tonn, J.C. (2005) Positron emission tomography with O-(2-[18F]fluoroethyl)-L-tyrosine versus magnetic resonance imaging in the diagnosis of recurrent gliomas. Neurosurgery 57:505–511PubMedCrossRefGoogle Scholar
  10. Rau, F.C., Weber, W.A., Wester, H.J., Herz, M., Becker, I., Kruger, A., Schwaiger, M., and Senekowitsch-Schmidtke, R. (2002) O-(2-[(18)F]Fluoroethyl)- L-tyrosine (FET): a tracer for differentiation of tumour from inflammation in murine lymph nodes. Eur. J. Nucl. Med. 29:1039–1046CrossRefGoogle Scholar
  11. Spaeth, N., Wyss, M.T., Weber, B., Scheidegger, S., Lutz, A., Verwey, J., Radovanovic, I., Pahnke, J., Wild, D., Westera, G., Weishaupt, D., Hermann, D.M., Kaser-Hotz, B., Aguzzi, A., and Buck, A. (2004) Uptake of 18F-fluorocholine, 18F-fluoroethyl-L-tyrosine, and 18F-FDG in acute cerebral radiation injury in the rat: implications for separation of radiation necrosis from tumor recurrence. J. Nucl. Med. 45:1931–1938PubMedGoogle Scholar
  12. Weber, W.A., Wester, H.J., Grosu, A.L., Herz, M., Dzewas, B., Feldmann, H.J., Molls, M., Stöcklin, G., and Schwaiger, M. (2000) O-(2-[18F]fluoroethyl)-L-tyrosine and L-[methyl-11C]methionine uptake in brain tumours: initial results of a comparative study. Eur. J. Nucl. Med. 27:542–549PubMedCrossRefGoogle Scholar
  13. Weckesser, M., Langen, K.J., Rickert, C.H., Kloska, S., Straeter, R., Hamacher, K., Kurlemann, G., Wassmann, H., Coenen, H.H., and Schober, O. (2005) Initial experiences with O-(2-[18F]fluorethyl)-L-tyrosine PET in the evaluation of primary brain tumors. Eur. J. Nucl. Med. Mol. Imaging 32:422–429PubMedCrossRefGoogle Scholar
  14. Wester, H.J., Herz, M., Weber, W., Heiss, P., Senekowitsch-Schmidtke, R., Schwaiger, M., and Stöcklin, G. (1999) Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-L-tyrosine for tumor imaging. J. Nucl. Med. 40:205–212PubMedGoogle Scholar

Copyright information

© Springer Netherlands 2011

Authors and Affiliations

  1. 1.Department of Nuclear MedicineMunster UniversityMϋnsterGermany

Personalised recommendations