Skip to main content

Brain Tumors: Planning and Monitoring Therapy with Positron Emission Tomography

  • Chapter
  • First Online:
Methods of Cancer Diagnosis, Therapy, and Prognosis

Part of the book series: Methods of Cancer Diagnosis, Therapy and Prognosis ((HAYAT,volume 8))

  • 1169 Accesses

Abstract

The term ‘brain tumor’ encompasses a broad spectrum of individual pathologies, affecting a heterogeneous patient population, with few clear etiological factors and widely varying prognostic implications. These tumors range from localized, potentially curable, benign lesions in childhood to rapidly progressive malignant disease with an increasing prevalence in an ageing population. Most primary brain tumors in adults are inherently infiltrating lesions, giving rise to progressive symptoms for the patient and adding to the difficulty of treating the condition without imposing permanent neurological deficits. Despite improvements in diagnostic techniques and potential therapies, outcomes for these patients have not improved substantially over recent years. In fact, the average “years of life lost” by a patient with a tumor of the central nervous system was more than that for any other cancer in one recent review (Burnet et al. 2005). This highlights the need to optimize current management as well as the necessity for further research and development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Braun, V., Dempf, S., Weller, R., Reske, S.N., Schachenmayr, W., and Richter, H.P. (2002) Cranial neuronavigation with direct integration of [11C] methionine positron emission tomography (PET) data – results of a pilot study in 32 surgical cases. Acta Neurochir. (Wien) 144:777–782

    Article  CAS  Google Scholar 

  • Burnet, N.G., Jefferies, S.J., Benson, R.J., Hunt, D.P., and Treasure, F.P. (2005) Years of life lost (YLL) from cancer is an important measure of population burden – and should be considered when allocating research funds. Br. J. Cancer 92:241–245

    PubMed  CAS  Google Scholar 

  • Chao, S.T., Suh, J.H., Raja, S., Lee, S.Y., and Barnett, G. (2001) The sensitivity and specificity of FDG PET in distinguishing recurrent brain tumor from radionecrosis in patients treated with stereotactic radiosurgery. Int. J. Cancer 96:191–197

    Article  PubMed  CAS  Google Scholar 

  • Chen, W., Cloughesy, T., Kamdar, N., Satyamurthy, N., Bergsneider, M., Liau, L., Mischel, P., Czernin, J., Phelps, M.E., and Silverman, D.H. (2005) Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J. Nucl. Med. 46:945–952

    PubMed  CAS  Google Scholar 

  • Chung, J.K., Kim, Y.K., Kim, S.K., Lee, Y.J., Paek, S., Yeo, J.S., Jeong, J.M., Lee, D.S., Jung, H.W., and Lee, M.C. (2002). Usefulness of 11C-methionine PET in the evaluation of brain lesions that are hypo- or isometabolic on 18F-FDG PET. Eur. J. Nucl. Med. Mol. Imaging 29:176–182

    Article  PubMed  CAS  Google Scholar 

  • Delbeke, D., Meyerowitz, C., Lapidus, R.L., Maciunas, R.J., Jennings, M.T., Moots, P.L., and Kessler, R.M. (1995) Optimal cutoff levels of F-18 fluorodeoxyglucose uptake in the differentiation of low-grade from high-grade brain tumors with PET. Radiology 195:47–52

    PubMed  CAS  Google Scholar 

  • Duffau, H., and Capelle, L. (2004) Preferential brain locations of low-grade gliomas. Cancer 100:2622–2626

    Article  PubMed  Google Scholar 

  • Grosu, A.L., Weber, W.A., Riedel, E., Jeremic, B., Nieder, C., Franz, M., Gumprecht, H., Jaeger, R., Schwaiger, M., and Molls, M. (2005) L-(methyl-11C) methionine positron emission tomography for target delineation in resected high-grade gliomas before radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 63:64–74

    Article  PubMed  CAS  Google Scholar 

  • Henze, M., Schuhmacher, J., Hipp, P., Kowalski, J., Becker, D.W., Doll, J., Macke, H.R., Hofmann, M., Debus, J., and Haberkorn, U. (2001) PET imaging of somatostatin receptors using [68GA]DOTA-D-Phe1-Tyr3-octreotide: first results in patients with meningiomas. J. Nucl. Med. 42:1053–1056

    PubMed  CAS  Google Scholar 

  • Herholz, K., Reulen, H.-J., von Stockhausen, H.-M., Thiel, A., Ilmberger, J., Kessler, J., Eisner, W., Yousry, T.A., and Heiss, W.D. (1997) Preoperative activation and intraoperative stimulation of language-related areas in patients with glioma. Neurosurgery 41:1253–1262

    Article  PubMed  CAS  Google Scholar 

  • Herholz, K., Holzer, T., Bauer, B., Schroder, R., Voges, J., Ernestus, R.I., Mendoza, G., Weber-Luxenburger, G., Lottgen, J., Thiel, A., Wienhard, K., and Heiss, W.D. (1998) 11C-methionine PET for differential diagnosis of low-grade gliomas. Neurology 50:1316–1322

    Article  PubMed  CAS  Google Scholar 

  • Holodny, A.I., Schulder, M., Liu, W.C., Wolko, J., Maldjian, J.A., and Kalnin, A.J. (2000) The effect of brain tumors on BOLD functional MR imaging activation in the adjacent motor cortex: implications for image-guided neurosurgery. Am. J. Neurorad. 21:1415–1422

    CAS  Google Scholar 

  • Holthoff, V.A., Herholz, K., Berthold, F., Widemann, B., Schroder, R., Neubauer, I., and Heiss, W.D. (1993) In vivo metabolism of childhood posterior fossa tumors and primitive neuroectodermal tumors before and after treatment. Cancer 72:1394–1403

    Article  PubMed  CAS  Google Scholar 

  • Iuchi, T., Iwadate, Y., Namba, H., Osato, K., Saeki, N., Yamaura, A., and Uchida, Y. (1999) Glucose and methionine uptake and proliferative activity in meningiomas. Neurol. Res. 21:640–644

    PubMed  CAS  Google Scholar 

  • Keles, G.E., Lamborn, K.R., and Berger, M.S. (2001) Low-grade hemispheric gliomas in adults: a critical review of extent of resection as a factor influencing outcome. J. Neurosurg. 95:735–745

    Article  PubMed  CAS  Google Scholar 

  • Kracht, L.W., Friese, M., Herholz, K., Schroeder, R., Bauer, B., Jacobs, A., and Heiss, W.D. (2003) Methyl-[11C]-L-methionine uptake as measured by positron emission tomography correlates to microvessel density in patients with glioma. Eur. J. Nucl. Med. Mol. Imaging 30:868–873

    Article  PubMed  CAS  Google Scholar 

  • Kracht, L.W., Miletic, H., Busch, S., Jacobs, A.H., Voges, J., Hoevels, M., Klein, J.C., Herholz, K., and Heiss, W.-D. (2004) Delineation of brain tumor extent with [11C]L-methionine positron emission tomography: local comparison with stereotactic histopathology. Clin. Cancer Res. 10:7163–7170

    Article  PubMed  CAS  Google Scholar 

  • Krings, T., Foltys, H., Reinges, M.H., Kemeny, S., Rohde, V., Spetzger, U., Gilsbach, J.M., and Thron, A. (2001) Navigated transcranial magnetic stimulation for presurgical planning – correlation with functional MRI. Minim. Invasive Neurosurg. 44:234–239

    Article  PubMed  CAS  Google Scholar 

  • Kubota, R., Kubota, K., Yamada, S., Tada, M., Takahashi, T., Iwata, R., and Tamahashi, N. (1995) Methionine uptake by tumor tissue: a microautoradiographic comparison with FDG. J. Nucl. Med. 36:484–492

    PubMed  CAS  Google Scholar 

  • Langen, K.J., Muhlensiepen, H., Holschbach, M., Hautzel, H., Jansen, P., and Coenen, H.H. (2000) Transport mechanisms of 3-[123I]iodo-alpha-methyl-L-tyrosine in a human glioma cell line: comparison with [3H]methyl-L-methionine. J. Nucl. Med. 41:1250–1255

    PubMed  CAS  Google Scholar 

  • Lippitz, B., Cremerius, U., Mayfrank, L., Bertalanffy, H., Raoofi, R., Weis, J., Bocking, A., Bull, U., and Gilsbach, J.M. (1996) PET-study of intracranial meningiomas: correlation with histopathology, cellularity and proliferation rate. Acta Neurochir. Suppl. 65:108–111

    PubMed  CAS  Google Scholar 

  • Maehara, T., Nariai, T., Arai, N., Kawai, K., Shimizu, H., Ishii, K., Ishiwata, K., and Ohno, K. (2004) Usefulness of [11C]methionine PET in the diagnosis of dysembryoplastic neuroepithelial tumor with temporal lobe epilepsy. Epilepsia 45:41–45

    Article  PubMed  Google Scholar 

  • Nuutinen, J., Sonninen, P., Lehikoinen, P., Sutinen, E., Valavaara, R., Eronen, E., Norrgard, S., Kulmala, J., Teras, M., and Minn, H. (2000) Radiotherapy treatment planning and long-term follow-up with [11C]methionine PET in patients with low-grade astrocytoma. Int. J. Radiat. Oncol. Biol. Phys. 48:43–52

    Article  PubMed  CAS  Google Scholar 

  • Ojemann JG, Miller JW, and Silbergeld DL (1996) Preserved function in brain invaded by tumor. Neurosurgery 39:253–258

    Article  PubMed  CAS  Google Scholar 

  • O’Tuama, L.A., Phillips, P.C., Strauss, L.C., Carson, B.C., Uno, Y., Smith, Q.R., Dannals, R.F., Wilson, A.A., Ravert, H.T., Loats, S., Loats, H.A., LaFrance, N.D., and Wagner, H.N. Jr. (1990) Two-phase [11C]L-methionine PET in childhood brain tumors. Pediatr. Neurol. 6:163–170

    Article  PubMed  Google Scholar 

  • Pirotte, B., Goldman, S., Massager, N., David, P., Wikler, D., Vandesteene, A., Salmon, I., Brotchi, J., and Levivier, M. (2004) Comparison of 18F-FDG and 11C-methionine for PET-guided stereotactic brain biopsy of gliomas. J. Nucl. Med. 45:1293–1298

    PubMed  CAS  Google Scholar 

  • Poirson-Bichat, F., Goncalves, R.A., Miccoli, L., Dutrillaux, B., and Poupon, M.F. (2000) Methionine depletion enhances the antitumoral efficacy of cytotoxic agents in drug-resistant human tumor xenografts. Clin. Cancer Res. 6:643–653

    PubMed  CAS  Google Scholar 

  • Ribom, D., Engler, H., Blomquist, E., and Smits, A. (2002) Potential significance of [11C]-methionine PET as a marker for the radiosensitivity of low-grade gliomas. Eur. J. Nucl. Med. Mol. Imaging 29:632–640

    Article  PubMed  CAS  Google Scholar 

  • Richardson, M.P., Hammers, A., Brooks, D.J., and Duncan, J.S. (2001) Benzodiazepine-GABA(A) receptor binding is very low in dysembryoplastic neuroepithelial tumor: a PET study. Epilepsia 42:1327–1334

    Article  PubMed  CAS  Google Scholar 

  • Roelcke, U., and Leenders, K.L. (1999) Positron emission tomography in patients with primary CNS lymphomas. J. Neurooncol. 43:231–236

    Article  PubMed  CAS  Google Scholar 

  • Roelcke, U., von Ammon, K., Hausmann, O., Kaech, D.L., Vanloffeld, W., Landolt, H., Rem, J.A., Gratzl, O., Radu, E.W., and Leenders, K.L. (1999) Operated low grade astrocytomas: a long term PET study on the effect of radiotherapy. J. Neurol. Neurosurg. Psychiatry 66:644–647

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto, H., Nakai, Y., Matsuda, M., Ohashi, Y., Tsuyuguchi, N., Kawabe, J., Okamura, T., and Ochi, H. (2000) Positron emission tomographic imaging of acoustic neuromas. Acta Otolaryngol. Suppl. 542:18–21

    Article  PubMed  CAS  Google Scholar 

  • Saleem, A., Brown, G.D., Brady, F., Aboagye, E.O., Osman, S., Luthra, S.K., Ranicar, A.S., Brock, C.S., Stevens, M.F., Newlands, E., Jones, T., and Price, P. (2003) Metabolic activation of temozolomide measured in vivo using positron emission tomography. Cancer Res. 63:2409–2415

    PubMed  CAS  Google Scholar 

  • Sasajima, T., Mineura, K., Itoh, Y., Kowada, M., Hatazawa, J., Ogawa, T., and Uemura, K. (1996) Spinal cord ependymoma: a positron emission tomographic study with (11C-methyl)-L-methionine. Neuroradiology 38:53–55

    Article  PubMed  CAS  Google Scholar 

  • Schreckenberger, M., Spetzger, U., Sabri, O., Meyer, P.T., Zeggel, T., Zimny, M., Gilsbach, J., and Buell, U. (2001) Localisation of motor areas in brain tumor patients: a comparison of preoperative [18F]FDG-PET and intraoperative cortical electrostimulation. Eur. J. Nucl. Med. 28:1394–1403

    Article  PubMed  CAS  Google Scholar 

  • Sokoloff, L., Reivich, M., Kennedy, C., Des Rosiers, M.H., Patlak, C.S., Pettigrew, K.D., Sakurada, O., and Shinohara, M. (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J. Neurochem. 28:897–916

    Article  PubMed  CAS  Google Scholar 

  • Spence, A.M., Muzi, M., Graham, M.M., O’Sullivan, F., Link, J.M., Lewellen, T.K., Lewellen, B., Freeman, S.D., Mankoff, D.A., Eary, J.F., and Krohn, K.A. (2002) 2-[(18)F]Fluoro-2-deoxyglucose and glucose uptake in malignant gliomas before and after radiotherapy: correlation with outcome. Clin. Cancer Res. 8:971–979

    PubMed  Google Scholar 

  • Sun, H., Sloan, A., Mangner, T.J., Vaishampayan, U., Muzik, O., Collins, J.M., Douglas, K., and Shields, A.F. (2005) Imaging DNA synthesis with [18F]FMAU and positron emission tomography in patients with cancer. Eur. J. Nucl. Med. Mol. Imaging 32:15–22

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, M., Ino, Y., Nakagawa, K., Tago, M., and Todo, T. (2005) High-dose conformal radiotherapy for supratentorial malignant glioma: a historical comparison. Lancet Oncol. 6:953–960

    Article  PubMed  Google Scholar 

  • Vlieger, E.J., Majoie, C.B., Leenstra, S., and Den Heeten, G.J. (2004) Functional magnetic resonance imaging for neurosurgical planning in neurooncology. Eur. Radiol. 14:1143–1153

    Article  PubMed  Google Scholar 

  • Weber, W.A., Wester, H.J., Grosu, A.L., Herz, M., Dzewas, B., Feldmann, H.J., Molls, M., Stocklin, G., and Schwaiger, M. (2000) O-(2-[18F]fluoroethyl)-L-tyrosine and L-[methyl-11C]methionine uptake in brain tumors: initial results of a comparative study. Eur. J. Nucl. Med. 27:542–549

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Coope .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Coope, D.J., Herholz, K., Price, P. (2011). Brain Tumors: Planning and Monitoring Therapy with Positron Emission Tomography. In: Hayat, M. (eds) Methods of Cancer Diagnosis, Therapy, and Prognosis. Methods of Cancer Diagnosis, Therapy and Prognosis, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8665-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-8665-5_14

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8664-8

  • Online ISBN: 978-90-481-8665-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics