Brain Tumors: Planning and Monitoring Therapy with Positron Emission Tomography

  • D. J. CoopeEmail author
  • K. Herholz
  • P. Price
Part of the Methods of Cancer Diagnosis, Therapy and Prognosis book series (HAYAT, volume 8)


The term ‘brain tumor’ encompasses a broad spectrum of individual pathologies, affecting a heterogeneous patient population, with few clear etiological factors and widely varying prognostic implications. These tumors range from localized, potentially curable, benign lesions in childhood to rapidly progressive malignant disease with an increasing prevalence in an ageing population. Most primary brain tumors in adults are inherently infiltrating lesions, giving rise to progressive symptoms for the patient and adding to the difficulty of treating the condition without imposing permanent neurological deficits. Despite improvements in diagnostic techniques and potential therapies, outcomes for these patients have not improved substantially over recent years. In fact, the average “years of life lost” by a patient with a tumor of the central nervous system was more than that for any other cancer in one recent review (Burnet et al. 2005). This highlights the need to optimize current management as well as the necessity for further research and development.


Positron Emission Tomography Transcranial Magnetic Stimulation Positron Emission Tomography Imaging Primary Brain Tumor Positron Emission Tomography Tracer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Braun, V., Dempf, S., Weller, R., Reske, S.N., Schachenmayr, W., and Richter, H.P. (2002) Cranial neuronavigation with direct integration of [11C] methionine positron emission tomography (PET) data – results of a pilot study in 32 surgical cases. Acta Neurochir. (Wien) 144:777–782CrossRefGoogle Scholar
  2. Burnet, N.G., Jefferies, S.J., Benson, R.J., Hunt, D.P., and Treasure, F.P. (2005) Years of life lost (YLL) from cancer is an important measure of population burden – and should be considered when allocating research funds. Br. J. Cancer 92:241–245PubMedGoogle Scholar
  3. Chao, S.T., Suh, J.H., Raja, S., Lee, S.Y., and Barnett, G. (2001) The sensitivity and specificity of FDG PET in distinguishing recurrent brain tumor from radionecrosis in patients treated with stereotactic radiosurgery. Int. J. Cancer 96:191–197PubMedCrossRefGoogle Scholar
  4. Chen, W., Cloughesy, T., Kamdar, N., Satyamurthy, N., Bergsneider, M., Liau, L., Mischel, P., Czernin, J., Phelps, M.E., and Silverman, D.H. (2005) Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J. Nucl. Med. 46:945–952PubMedGoogle Scholar
  5. Chung, J.K., Kim, Y.K., Kim, S.K., Lee, Y.J., Paek, S., Yeo, J.S., Jeong, J.M., Lee, D.S., Jung, H.W., and Lee, M.C. (2002). Usefulness of 11C-methionine PET in the evaluation of brain lesions that are hypo- or isometabolic on 18F-FDG PET. Eur. J. Nucl. Med. Mol. Imaging 29:176–182PubMedCrossRefGoogle Scholar
  6. Delbeke, D., Meyerowitz, C., Lapidus, R.L., Maciunas, R.J., Jennings, M.T., Moots, P.L., and Kessler, R.M. (1995) Optimal cutoff levels of F-18 fluorodeoxyglucose uptake in the differentiation of low-grade from high-grade brain tumors with PET. Radiology 195:47–52PubMedGoogle Scholar
  7. Duffau, H., and Capelle, L. (2004) Preferential brain locations of low-grade gliomas. Cancer 100:2622–2626PubMedCrossRefGoogle Scholar
  8. Grosu, A.L., Weber, W.A., Riedel, E., Jeremic, B., Nieder, C., Franz, M., Gumprecht, H., Jaeger, R., Schwaiger, M., and Molls, M. (2005) L-(methyl-11C) methionine positron emission tomography for target delineation in resected high-grade gliomas before radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 63:64–74PubMedCrossRefGoogle Scholar
  9. Henze, M., Schuhmacher, J., Hipp, P., Kowalski, J., Becker, D.W., Doll, J., Macke, H.R., Hofmann, M., Debus, J., and Haberkorn, U. (2001) PET imaging of somatostatin receptors using [68GA]DOTA-D-Phe1-Tyr3-octreotide: first results in patients with meningiomas. J. Nucl. Med. 42:1053–1056PubMedGoogle Scholar
  10. Herholz, K., Reulen, H.-J., von Stockhausen, H.-M., Thiel, A., Ilmberger, J., Kessler, J., Eisner, W., Yousry, T.A., and Heiss, W.D. (1997) Preoperative activation and intraoperative stimulation of language-related areas in patients with glioma. Neurosurgery 41:1253–1262PubMedCrossRefGoogle Scholar
  11. Herholz, K., Holzer, T., Bauer, B., Schroder, R., Voges, J., Ernestus, R.I., Mendoza, G., Weber-Luxenburger, G., Lottgen, J., Thiel, A., Wienhard, K., and Heiss, W.D. (1998) 11C-methionine PET for differential diagnosis of low-grade gliomas. Neurology 50:1316–1322PubMedCrossRefGoogle Scholar
  12. Holodny, A.I., Schulder, M., Liu, W.C., Wolko, J., Maldjian, J.A., and Kalnin, A.J. (2000) The effect of brain tumors on BOLD functional MR imaging activation in the adjacent motor cortex: implications for image-guided neurosurgery. Am. J. Neurorad. 21:1415–1422Google Scholar
  13. Holthoff, V.A., Herholz, K., Berthold, F., Widemann, B., Schroder, R., Neubauer, I., and Heiss, W.D. (1993) In vivo metabolism of childhood posterior fossa tumors and primitive neuroectodermal tumors before and after treatment. Cancer 72:1394–1403PubMedCrossRefGoogle Scholar
  14. Iuchi, T., Iwadate, Y., Namba, H., Osato, K., Saeki, N., Yamaura, A., and Uchida, Y. (1999) Glucose and methionine uptake and proliferative activity in meningiomas. Neurol. Res. 21:640–644PubMedGoogle Scholar
  15. Keles, G.E., Lamborn, K.R., and Berger, M.S. (2001) Low-grade hemispheric gliomas in adults: a critical review of extent of resection as a factor influencing outcome. J. Neurosurg. 95:735–745PubMedCrossRefGoogle Scholar
  16. Kracht, L.W., Friese, M., Herholz, K., Schroeder, R., Bauer, B., Jacobs, A., and Heiss, W.D. (2003) Methyl-[11C]-L-methionine uptake as measured by positron emission tomography correlates to microvessel density in patients with glioma. Eur. J. Nucl. Med. Mol. Imaging 30:868–873PubMedCrossRefGoogle Scholar
  17. Kracht, L.W., Miletic, H., Busch, S., Jacobs, A.H., Voges, J., Hoevels, M., Klein, J.C., Herholz, K., and Heiss, W.-D. (2004) Delineation of brain tumor extent with [11C]L-methionine positron emission tomography: local comparison with stereotactic histopathology. Clin. Cancer Res. 10:7163–7170PubMedCrossRefGoogle Scholar
  18. Krings, T., Foltys, H., Reinges, M.H., Kemeny, S., Rohde, V., Spetzger, U., Gilsbach, J.M., and Thron, A. (2001) Navigated transcranial magnetic stimulation for presurgical planning – correlation with functional MRI. Minim. Invasive Neurosurg. 44:234–239PubMedCrossRefGoogle Scholar
  19. Kubota, R., Kubota, K., Yamada, S., Tada, M., Takahashi, T., Iwata, R., and Tamahashi, N. (1995) Methionine uptake by tumor tissue: a microautoradiographic comparison with FDG. J. Nucl. Med. 36:484–492PubMedGoogle Scholar
  20. Langen, K.J., Muhlensiepen, H., Holschbach, M., Hautzel, H., Jansen, P., and Coenen, H.H. (2000) Transport mechanisms of 3-[123I]iodo-alpha-methyl-L-tyrosine in a human glioma cell line: comparison with [3H]methyl-L-methionine. J. Nucl. Med. 41:1250–1255PubMedGoogle Scholar
  21. Lippitz, B., Cremerius, U., Mayfrank, L., Bertalanffy, H., Raoofi, R., Weis, J., Bocking, A., Bull, U., and Gilsbach, J.M. (1996) PET-study of intracranial meningiomas: correlation with histopathology, cellularity and proliferation rate. Acta Neurochir. Suppl. 65:108–111PubMedGoogle Scholar
  22. Maehara, T., Nariai, T., Arai, N., Kawai, K., Shimizu, H., Ishii, K., Ishiwata, K., and Ohno, K. (2004) Usefulness of [11C]methionine PET in the diagnosis of dysembryoplastic neuroepithelial tumor with temporal lobe epilepsy. Epilepsia 45:41–45PubMedCrossRefGoogle Scholar
  23. Nuutinen, J., Sonninen, P., Lehikoinen, P., Sutinen, E., Valavaara, R., Eronen, E., Norrgard, S., Kulmala, J., Teras, M., and Minn, H. (2000) Radiotherapy treatment planning and long-term follow-up with [11C]methionine PET in patients with low-grade astrocytoma. Int. J. Radiat. Oncol. Biol. Phys. 48:43–52PubMedCrossRefGoogle Scholar
  24. Ojemann JG, Miller JW, and Silbergeld DL (1996) Preserved function in brain invaded by tumor. Neurosurgery 39:253–258PubMedCrossRefGoogle Scholar
  25. O’Tuama, L.A., Phillips, P.C., Strauss, L.C., Carson, B.C., Uno, Y., Smith, Q.R., Dannals, R.F., Wilson, A.A., Ravert, H.T., Loats, S., Loats, H.A., LaFrance, N.D., and Wagner, H.N. Jr. (1990) Two-phase [11C]L-methionine PET in childhood brain tumors. Pediatr. Neurol. 6:163–170PubMedCrossRefGoogle Scholar
  26. Pirotte, B., Goldman, S., Massager, N., David, P., Wikler, D., Vandesteene, A., Salmon, I., Brotchi, J., and Levivier, M. (2004) Comparison of 18F-FDG and 11C-methionine for PET-guided stereotactic brain biopsy of gliomas. J. Nucl. Med. 45:1293–1298PubMedGoogle Scholar
  27. Poirson-Bichat, F., Goncalves, R.A., Miccoli, L., Dutrillaux, B., and Poupon, M.F. (2000) Methionine depletion enhances the antitumoral efficacy of cytotoxic agents in drug-resistant human tumor xenografts. Clin. Cancer Res. 6:643–653PubMedGoogle Scholar
  28. Ribom, D., Engler, H., Blomquist, E., and Smits, A. (2002) Potential significance of [11C]-methionine PET as a marker for the radiosensitivity of low-grade gliomas. Eur. J. Nucl. Med. Mol. Imaging 29:632–640PubMedCrossRefGoogle Scholar
  29. Richardson, M.P., Hammers, A., Brooks, D.J., and Duncan, J.S. (2001) Benzodiazepine-GABA(A) receptor binding is very low in dysembryoplastic neuroepithelial tumor: a PET study. Epilepsia 42:1327–1334PubMedCrossRefGoogle Scholar
  30. Roelcke, U., and Leenders, K.L. (1999) Positron emission tomography in patients with primary CNS lymphomas. J. Neurooncol. 43:231–236PubMedCrossRefGoogle Scholar
  31. Roelcke, U., von Ammon, K., Hausmann, O., Kaech, D.L., Vanloffeld, W., Landolt, H., Rem, J.A., Gratzl, O., Radu, E.W., and Leenders, K.L. (1999) Operated low grade astrocytomas: a long term PET study on the effect of radiotherapy. J. Neurol. Neurosurg. Psychiatry 66:644–647PubMedCrossRefGoogle Scholar
  32. Sakamoto, H., Nakai, Y., Matsuda, M., Ohashi, Y., Tsuyuguchi, N., Kawabe, J., Okamura, T., and Ochi, H. (2000) Positron emission tomographic imaging of acoustic neuromas. Acta Otolaryngol. Suppl. 542:18–21PubMedCrossRefGoogle Scholar
  33. Saleem, A., Brown, G.D., Brady, F., Aboagye, E.O., Osman, S., Luthra, S.K., Ranicar, A.S., Brock, C.S., Stevens, M.F., Newlands, E., Jones, T., and Price, P. (2003) Metabolic activation of temozolomide measured in vivo using positron emission tomography. Cancer Res. 63:2409–2415PubMedGoogle Scholar
  34. Sasajima, T., Mineura, K., Itoh, Y., Kowada, M., Hatazawa, J., Ogawa, T., and Uemura, K. (1996) Spinal cord ependymoma: a positron emission tomographic study with (11C-methyl)-L-methionine. Neuroradiology 38:53–55PubMedCrossRefGoogle Scholar
  35. Schreckenberger, M., Spetzger, U., Sabri, O., Meyer, P.T., Zeggel, T., Zimny, M., Gilsbach, J., and Buell, U. (2001) Localisation of motor areas in brain tumor patients: a comparison of preoperative [18F]FDG-PET and intraoperative cortical electrostimulation. Eur. J. Nucl. Med. 28:1394–1403PubMedCrossRefGoogle Scholar
  36. Sokoloff, L., Reivich, M., Kennedy, C., Des Rosiers, M.H., Patlak, C.S., Pettigrew, K.D., Sakurada, O., and Shinohara, M. (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J. Neurochem. 28:897–916PubMedCrossRefGoogle Scholar
  37. Spence, A.M., Muzi, M., Graham, M.M., O’Sullivan, F., Link, J.M., Lewellen, T.K., Lewellen, B., Freeman, S.D., Mankoff, D.A., Eary, J.F., and Krohn, K.A. (2002) 2-[(18)F]Fluoro-2-deoxyglucose and glucose uptake in malignant gliomas before and after radiotherapy: correlation with outcome. Clin. Cancer Res. 8:971–979PubMedGoogle Scholar
  38. Sun, H., Sloan, A., Mangner, T.J., Vaishampayan, U., Muzik, O., Collins, J.M., Douglas, K., and Shields, A.F. (2005) Imaging DNA synthesis with [18F]FMAU and positron emission tomography in patients with cancer. Eur. J. Nucl. Med. Mol. Imaging 32:15–22PubMedCrossRefGoogle Scholar
  39. Tanaka, M., Ino, Y., Nakagawa, K., Tago, M., and Todo, T. (2005) High-dose conformal radiotherapy for supratentorial malignant glioma: a historical comparison. Lancet Oncol. 6:953–960PubMedCrossRefGoogle Scholar
  40. Vlieger, E.J., Majoie, C.B., Leenstra, S., and Den Heeten, G.J. (2004) Functional magnetic resonance imaging for neurosurgical planning in neurooncology. Eur. Radiol. 14:1143–1153PubMedCrossRefGoogle Scholar
  41. Weber, W.A., Wester, H.J., Grosu, A.L., Herz, M., Dzewas, B., Feldmann, H.J., Molls, M., Stocklin, G., and Schwaiger, M. (2000) O-(2-[18F]fluoroethyl)-L-tyrosine and L-[methyl-11C]methionine uptake in brain tumors: initial results of a comparative study. Eur. J. Nucl. Med. 27:542–549PubMedCrossRefGoogle Scholar

Copyright information

© Springer Netherlands 2011

Authors and Affiliations

  1. 1.Manchester Molecular Imaging Center, Academic Department of Radiation OncologyUniversity of Manchester, Christie Hospital NHS TrustManchesterUK

Personalised recommendations