Micro-environmental Modelling

  • Tareq Hussein
  • Markku KulmalaEmail author
Part of the Environmental Pollution book series (EPOL, volume 17)


“Indoor air quality” is a wide subject with different social, economic, and health aspects. In developed countries, people spend more than 80% of their time indoors where they are exposed to many kinds of air pollutants either from outdoor origin or produced indoors. An air pollutant can be a gas or an aerosol particle (solid, liquid, radioactive, bio-aerosols, etc.). Indoor air pollutants are transported from the outdoor air by means of mechanical ventilation systems or across the building shell as a result of natural ventilation. In many aspects, the indoor-to-outdoor relationship of air pollutants, as well as, the dynamic behavior of air pollutants can be addressed and investigated by means of mathematical models. However, the accuracy of such mathematical models depends on many factors including, most importantly, the confidence in the input parameters, validity of the assumptions, description of the processes, and user influence.


Aerosol Particle Ventilation Rate Particle Number Concentration Natural Ventilation Indoor Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abadie, M., Limam, K., & Allard, F. (2001). Indoor particle pollution: Effect of wall textures on particle deposition. Building and Environment, 36, 821–827.CrossRefGoogle Scholar
  2. Abt, E., Suh, H. H., Catalano, P., & Koutrakis, P. (2000). Relative contribution of outdoor and indoor particle sources to indoor concentrations. Environmental Science and Technology, 34, 3579–3587.CrossRefGoogle Scholar
  3. Afshari, A., Matson, U., & Ekberg, L. E. (2005). Characterization of indoor sources of fine and ultrafine particles: A study conducted in a full-scale chamber. Indoor Air, 15, 141–150.CrossRefGoogle Scholar
  4. Alzona, J., Cohen, B. L., Rudolph, H., Jow, H. N., & Frohliger, J. O. (1979). Indoor-outdoor relationships for airborne particulate matter of outdoor origin. Atmospheric Environment, 13, 55–60.CrossRefGoogle Scholar
  5. Asmi, A. J., Pirjola, L. H., & Kulmala, M. A. (2004). Sectional aerosol model for submicron particles in indoor air. Scandinavian Journal of Work, Environment and Health, 30(Suppl 2), 63–72.Google Scholar
  6. Borchiellini, R., & Fürbringer, J.-M. (1999). An evaluation exercise of a multizone air flow model. Energy and Buildings, 30, 35–51.CrossRefGoogle Scholar
  7. Corner, B. J., & Pendlebury, E. D. (1951). The coagulation and deposition of a stirred aerosol. Proceedings of the Physical Society, B64, 645–654.Google Scholar
  8. Crouse, B., Krafczyk, M., Kühner, S., Rank, E., & van Treeck, C. (2002). Indoor air flow analysis based on lattice Boltzmann methods. Energy and Buildings, 34, 941–949.CrossRefGoogle Scholar
  9. Dascalaki, E., Santamouris, M., Argiriou, A., Helmis, C., Asimakopoulos, D. N., Papadopoulos, K., et al. (1996). On the combination of air velocity and flow measurements in single sided natural ventilation configurations. Energy and Buildings, 24, 155–165.CrossRefGoogle Scholar
  10. Fan, Y. (1995). CFD modelling of the air and contaminant distribution in rooms. Energy and Buildings, 23, 33–39.CrossRefGoogle Scholar
  11. Fan, C. W., & Zhang, J. J. (2001). Characterization of emissions from portable household combustion devices: Particle size distributions, emission rates and factors, and potential exposures. Atmospheric Environment, 35, 1281–1290.CrossRefGoogle Scholar
  12. Ferro, A. R., Kopperud, R. J., & Hildemann, L. M. (2004). Source strengths for indoor human activities that resuspend particulate matter. Environmental Science and Technology, 38, 1759–1764.CrossRefGoogle Scholar
  13. Feustel, H. E. (1999). COMIS-an international multizone air-flow and contaminant transport model. Energy and Buildings, 30, 3–18.CrossRefGoogle Scholar
  14. Fogh, C. L., Byrne, M. A., Roed, J., & Goddard, A. J. H. (1997). Size specific indoor aerosol deposition measurements and derived I/O concentrations ratios. Atmospheric Environment, 31, 2193–2203.CrossRefGoogle Scholar
  15. Friess, H., & Yadigaroglu, G. (2002). Modeling of the resuspension of particle clusters from multilayer aerosol deposits with variable porosity. Journal of Aerosol Science, 33, 883–906.CrossRefGoogle Scholar
  16. Fuchs, N. A. (1964). The mechanics of aerosols. New York: Dover.Google Scholar
  17. Fuchs, N. A., & Sutugin, A. G. (1971). Highly dispersed aerosol. In G. M. Hidy & J. R. Brock (Eds.), Topics in current aerosol research. New York: Pergamon.Google Scholar
  18. Gan, G. (1995). Evaluation of room air distributions systems using computational fluid dynamics. Energy and Buildings, 23, 83–93.CrossRefGoogle Scholar
  19. Goodfellow, H., & Tähti, E. (2001). Industrial ventilation: Design guidebook (p. 685). California: Academic (Gustavsson, J. [1996]. Cabin air filters: Performance and requirements. SAE Conference, Detroit, February 1996).Google Scholar
  20. Guha, A. (1997). A unified Eulerian theory of turbulent deposition to smooth and rough surfaces. Journal of Aerosol Science, 28, 1517–1537.CrossRefGoogle Scholar
  21. Haas, A., Weber, A., Dorer, V., Keilholz, W., & Pelletret, R. (2002). COMIS v3.1 simulation environment for multizone air flow and pollutant transport modelling. Energy and Buildings, 34, 873–882.CrossRefGoogle Scholar
  22. Hanley, J. T., Ensor, D. S., Smith, D. D., & Sparks, L. E. (1994). Fractional aerosol filtration efficiency of in duct ventilation air cleaners. Indoor Air, 4, 169–178.CrossRefGoogle Scholar
  23. He, C., Morawska, L., Hitchins, J., & Gilbert, D. (2004). Contribution from indoor sources to particle number and mass concentrations in residential houses. Atmospheric Environment, 38, 3405–3415.CrossRefGoogle Scholar
  24. Hinds, W. C. (1999). Aerosol technology (2nd ed.). New York: Wiley.Google Scholar
  25. Hussein, T. (2005). Indoor and outdoor aerosol particle size characterization in Helsinki. Report Series in Aerosol Science No: 74. Helsinki, Finland: Finnish Aerosol Association Research.Google Scholar
  26. Hussein, T., Glytsos, T., Ondráček, J., Ždímal, V., Hämeri, K., Lazaridis, M., et al. (2006). Particle size characterization and emission rates during indoor activities in a house. Atmospheric Environment, 40, 4285–4307.CrossRefGoogle Scholar
  27. Hussein, T., Hruška, A., Dohányosová, P., Džumbová, L., Hemerka, J., & Kulmala, M., et al. (2009a). Evaluation of deposition rates of aerosol particles on smooth surfaces inside a test chamber. Atmospheric Environment, 43, 905–914.CrossRefGoogle Scholar
  28. Hussein, T., Korhonen, H., Herrmann, E., Hämeri, K., Lehtinen, K., & Kulmala, M. (2005b). Emission rates due to indoor activities: Indoor aerosol model development, evaluation, and applications. Aerosol Science and Technology, 39(11), 1111–1127.CrossRefGoogle Scholar
  29. Hussein, T., Kubincová, L., Dohányosová, P., Hruška, A., Džumbová, L., Hemerka, J., et al. (2009b). Deposition of aerosol particles on rough surfaces inside a test chamber. Buildings and Environment, 44, 2056–2063.CrossRefGoogle Scholar
  30. Jamriska, M., Morawska, L., & Ensor, D. S. (2003). Control strategies for sub-micrometer particles indoors: Model study of air filtration and ventilation. Indoor Air, 13, 96–105.CrossRefGoogle Scholar
  31. Ju, C., & Spengler, J. D. (1981). Room to room variations in concentration of respirable particles in residences. Environmental Science and Technology, 15, 592–596.CrossRefGoogle Scholar
  32. Kildeso, J., Vinzents, P., Schneider, T., & Kloch, N. P. (1999). A simple method for measuring the potential resuspension of dust from carpets in the indoor environment. Textile Research Journal, 69, 169–175.CrossRefGoogle Scholar
  33. Korhonen, H., Lehtinen, K. E. J., & Kulmala, M. (2004). Aerosol dynamic model UHMA: Model development and validation. Atmospheric Chemistry and Physics, 4, 757–771.CrossRefGoogle Scholar
  34. Kulmala, M., Asmi, A., & Pirjola, L. (1999). Indoor air aerosol model: The effect of outdoor air, filtration and ventilation on indoor concentrations. Atmospheric Environment, 33, 2133–2144.CrossRefGoogle Scholar
  35. Lai, A. C. K. (2006). Investigation of electrostatic forces on particle deposition in a test chamber. Indoor Built Environment, 15, 179–186.CrossRefGoogle Scholar
  36. Lai, A. C. K., & Nazaroff, W. W. (2000). Modeling indoor particle deposition from turbulent flow onto smooth surfaces. Journal of Aerosol Science, 31, 463–476.CrossRefGoogle Scholar
  37. Lai, A. C. K., Byrne, M. A., & Goddard, A. J. H. (2001). Aerosol deposition in turbulent channel flow on a regular array of three-dimensional roughness elements. Aerosol Science, 32, 121–137.CrossRefGoogle Scholar
  38. Lai, A. C. K., Byrne, M. A., & Goddard, A. J. H. (2002). Experimental studies of the effect of rough surfaces and air speed on aerosol deposition in a test chamber. Aerosol Science and Technology, 36, 973–982.CrossRefGoogle Scholar
  39. Lazaridis, M., & Drossinos, Y. (1998). Multilayer resuspension of small identical particles by turbulent flow. Aerosol Science and Technology, 28(6), 548–560.CrossRefGoogle Scholar
  40. Lee, S.-C., Guo, H., Li, W.-M., & Chan, L.-Y. (2002). Inter-comparison of air pollutant concentrations in different indoor environments in Hong Kong. Atmospheric Environment, 36, 1929–1940.CrossRefGoogle Scholar
  41. Li, Y., & Delsante, A. (2001). Natural ventilation induced by combined wind and thermal forces. Buildings and Environment, 36, 59–71.CrossRefGoogle Scholar
  42. Liu, D.-L., & Nazaroff, W. W. (2001). Modeling pollutant penetration across building envelopes. Atmospheric Environment, 35, 4451–4462.CrossRefGoogle Scholar
  43. Long, C. H., Suh, H. H., & Koutrakis, P. (2000). Characterization of indoor particle sources using continuous mass and size monitors. Journal of the Air & Waste Management Association, 50, 1236–1250.Google Scholar
  44. Long, C. M., Suh, H. H., Catalano, P. J., & Koutrakis, P. (2001). Using time- and size-resolved particulate data to quantify indoor penetration and deposition behavior. Environmental Science and Technology 35, 2089–2099.CrossRefGoogle Scholar
  45. Lum, R. M., & Graedel, T. E. (1973). Measurements and models of indoor aerosol size spectra. Atmospheric Environment, 7, 827–842.CrossRefGoogle Scholar
  46. McMurry, P. H., & Radar, D. J. (1985). Aerosol wall losses in electrically charged chambers. Aerosol Science and Technology, 4, 249–268.CrossRefGoogle Scholar
  47. Meklin, T., Reponen, T., Toivola, M., Koponen, V., Husman, T., Hyvärinen, A., et al. (2002). Size distributions of airborne microbes in moisture-damaged and reference school buildings of two construction types. Atmospheric Environment, 36, 6031–6039.CrossRefGoogle Scholar
  48. Miller, S. L., & Nazaroff, W. W. (2001). Environmental tobacco smoke particles in multizone indoor environments. Atmospheric Environment, 35, 2053–2067.CrossRefGoogle Scholar
  49. Morawska, L., He, C., Hitchins, J., Gilbert, D., & Parappukkaran, S. (2001). The relationship between indoor and outdoor airborne particles in the residential environment. Atmospheric Environment, 35, 3463–3473.CrossRefGoogle Scholar
  50. Mosley, R. B., Greenwell, D. J., Sparks, L. E., Guom, Z., Tucker, W. G., Fortmann, R., et al. (2001). Penetration of ambient fine particles into the indoor environment. Aerosol Science and Technology, 34, 127–136.Google Scholar
  51. Nazaroff, W. W., & Cass, G. R. (1986). Mathematical modeling of chemically reactive pollutants in indoor air. Environmental Science and Technology, 20, 924–934.CrossRefGoogle Scholar
  52. Nazaroff, W. W., & Cass, G. R. (1989). Mathematical modeling of indoor aerosol dynamics. Environmental Science and Technology, 23, 157–166.CrossRefGoogle Scholar
  53. Nazaroff, W. W. (2004). Indoor particle dynamics. Indoor Air, 14(Suppl. 7), 175–183.CrossRefGoogle Scholar
  54. Otten, J. A., & Burge, H. A. (1999). Bacteria. In J. Macher (Ed.), Bioaerosols, assessment and control (pp. 183-1810). Cincinnati, OH: American Conference of Governmental Industrial Hygienists.Google Scholar
  55. Platts-Mills, T. A. E., Ward, G. W., Sporik, R., Gelber, L. E., Champman, M. D., & Heymann, P. W. (1991). Epidemiology of the relationship between exposure to indoor allergins and asthma. International Archives of Allergy and Applied Immunology, 87(2), 505–510.Google Scholar
  56. Porstendörfer, J., & Reineking, A. (1992). Indoor behavior and characteristics of radon progeny. Radiation Protection Dosimetry, 45, 303–311.Google Scholar
  57. Posner, J. D., Buchanan, C. R., & Dunn-Rankin, D. (2003). Measurement and prediction of indoor air flow in a model room. Energy and Buildings, 35, 515–526.CrossRefGoogle Scholar
  58. Raunemaa, T., Kulmala, M., Saari, H., Olin, M., & Kulmala, M. H. (1989). Indoor air aerosol model: Transport indoors and deposition of fine and coarse particles. Aerosol Science and Technology, 11, 11–25.CrossRefGoogle Scholar
  59. Ren, Z., & Stewart, J. (2003). Simulating air flow and temperature distribution inside buildings using a modified version of COMIS with sub-zonal divisions. Energy and Buildings, 35, 257–271.CrossRefGoogle Scholar
  60. Riley, W. J., Mckone, T. E., Lai, A. C. K., & Nazaroff, W. W. (2002). Indoor particulate matter of outdoor origin: Importance of size-dependent removal mechanisms. Environmental Science and Technology, 36, 200–207.CrossRefGoogle Scholar
  61. Roulet, C.-A., Fürbringer, J.-M., & Creton, P. (1999). The influence of the user on the results of multizone air flow simulations with COMIS. Energy and Buildings, 30, 73–86.CrossRefGoogle Scholar
  62. Schneider, T., Kildeso, J., & Breum, N. O. (1999). A two-compartment model for determining the contribution of sources, surface deposition and resuspension to air and surface dust concentration levels in occupied rooms. Building and Environment, 34, 583–595.CrossRefGoogle Scholar
  63. Seinfeld, H. S., & Pandis, S. N. (1998). Atmospheric chemistry and physics: From air pollution to climate change (2nd ed.). New York: Wiley.Google Scholar
  64. Shimada, M., Okuyama, K., Kousaka, Y., Okuyama, Y., & Seinfeld, J. H. (1989). Enhancement of Brownian and turbulent diffusive deposition of charged particles in the presence of an electric field. Journal of Colloid and Interface Science, l28, 157–168.CrossRefGoogle Scholar
  65. Sippola, R., & Nazaroff, W. W. (2003). Modeling particle loss in ventilation ducts. Atmospheric Environment, 37, 5597–5609.CrossRefGoogle Scholar
  66. Thatcher, T. L., Lai, A. C. K., Moreno-Jackson, R., Sextro, R. G., & Nazaroff, W. W. (2002). Effects of room furnishings and air speed on particle deposition rates indoors. Atmospheric Environment, 36, 1811–1819.CrossRefGoogle Scholar
  67. Thatcher, T. L., & Layton, D. W. (1995). Deposition, resuspension, and penetration of particles within a residence. Atmospheric Environment, 29, 1487–1497.CrossRefGoogle Scholar
  68. Theerachaisupakij, W., Matsusaka, S., Akashi, Y., & Masuda, H. (2003). Reentrainment of deposited particles by drag and aerosol collision. Journal of Aerosol Science, 34, 261–274.CrossRefGoogle Scholar
  69. Thornburg, J., Ensor, D. S., Rodos, C. E., Lawless, P. A., Sparks, L. E., & Mosley, R. B. (2001). Penetration of particles into buildings and associated physical factors - Part I: Model development and computer simulations. Aerosol Science and Technology, 34, 284–296.Google Scholar
  70. Tung, T. C. W., Chao, C. Y. H., & Burnett, J. (1999). A methodology to investigate the particulate penetration coefficient through building shell. Atmospheric Environment, 33, 881–893.CrossRefGoogle Scholar
  71. Vanmarcke, H., Landsheere, C., Van Dingenen, R., & Poffijn, A. (1991). Influence of turbulence on the deposition rate constant of the unattached radon decay products. Aerosol Science and Technology, 14, 257–265.CrossRefGoogle Scholar
  72. Vartiainen, E., Kulmala, M., Ruuskanen, T. M., Taipale, R., Rinne, J., & Vehkamäki, H. (2006). Formation and growth of indoor air aerosol particles as a result of D-limonene oxidation. Atmospheric Environment (in press), corrected proof.Google Scholar
  73. Walton, G. N. (September 1997). CONTAM96 User manual. Report NSITIR 6056. Gaithersburg: US Department of Commerce, National Institute of Standards and Technology.Google Scholar
  74. Wanner, H. U. (1993). Sources of pollutants in indoor air. IARC Scientific Publications, 109, 19–30.Google Scholar
  75. Zhao, B., & Wu, J. (2006a). Modeling particle deposition from fully developed turbulent flow in ventilation duct. Atmospheric Environment, 40, 457–466.CrossRefGoogle Scholar
  76. Zhao, B., & Wu, J. (2006b). Modeling particle deposition onto rough walls in ventilation duct. Atmospheric Environment, 40, 6918–6927.CrossRefGoogle Scholar
  77. Ziskind, G., Dubovsky, V., & Letan, R. (2002). Ventilation by natural convection of a one-story building. Energy and Buildings, 34, 91–102.CrossRefGoogle Scholar

Further Reading

  1. Abadie, M., Limam, K., Bouilly, J., & Génin, D. (2004). Particle pollution in the French high-speed train (TGV) smoker cars: Measurement and prediction of passengers exposure. Atmospheric Environment, 38, 2017–2027.CrossRefGoogle Scholar
  2. Cheng, Y. S., Bechtold, W. E., Yu, C. C., & Hung, I. F. (1995). Incense smoke: Characterization and dynamics in indoor environments. Aerosological Science and Technology, 23, 271–281.CrossRefGoogle Scholar
  3. Chen, F., Yu, S. C. M., & Lai, A. C. K. (2006). Modeling particle distribution and deposition in indoor environments with a new drift-flux model. Atmospheric Environment, 40, 357–367.CrossRefGoogle Scholar
  4. Cole, C. (1998). Candle Soot deposition and its impacts on restorers, USA, Sentry Construction Company.Google Scholar
  5. Dennekamp, M., Howarth, S., Dick, C. A. J., Cherrie, J. W., Donaldson, K., & Seaton, A. (2001). Ultrafine particles and nitrogen oxides generated by gas and electric cooking. Occupational and Environmental Medicine, 58, 511–516.CrossRefGoogle Scholar
  6. Fine, P. M., Cass, G. R., & Simoneit, B. R. T. (1999). Characterization of fine particle emissions from burning church candles. Environmental Science and Technolology, 33, 2352–2362.CrossRefGoogle Scholar
  7. Flückiger, B., Seifert, M., Koller, T., & Monn, C. (2000). Air quality measurements in a model kitchen using gas and electric stoves. Proceedings of Healthy Buildings 2000, 1, 567–572.Google Scholar
  8. Helsper, C., Moltr, W., Loffler, F., Wadenpohl, C., Kaufmann, S., & Wenninger, G. (1993). Investigation of a non-aerosol generator for the production of carbon aggregate particles. Atmospheric Environment, 27A, 1271–1279.Google Scholar
  9. Howard-Reed, C., Wallace, L. A., & Emmerich, S. J. (2003). Effect of ventilation system and air filters on decay rates of particles produced by indoor sources in an occupied townhouse. Atmospheric Environment, 37, 5295–5306.CrossRefGoogle Scholar
  10. Hussein, T., Hämeri, K., Heikkinen, M. S. A., & Kulmala, M. (2005a). Indoor and outdoor particle size characterization at a family house in Espoo - Finland. Atmospheric Environment, 39, 3697–3709.CrossRefGoogle Scholar
  11. Jones, A. P. (1999). Indoor air quality and health. Atmospheric Environment, 33, 4535–4564.CrossRefGoogle Scholar
  12. Kemens, R., Lee, C.-T., Wiener, R., & Leith, D. (1991). A study to characterize indoor particles in three non-smoking homes. Atmospheric Environment, 25A, 939–948.Google Scholar
  13. Kleeman, M. J., Schauer, J. J., & Cass, G. R. (2000). Size and composition of fine particulate matter emitted from motor vehicles. Environmental Science and Technology, 34, 1132–1142.CrossRefGoogle Scholar
  14. Klepeis, N. E., Apte, M. G., Gundel, L. A., Sextro, R. G., & Nazaroff, W. W. (2003). Determining size-specific emission factors for environmental tobacco smoke particles. Aerosological Science and Technology, 37, 780–790.CrossRefGoogle Scholar
  15. Lai, A. C. K. (2004). Modeling of airborne particle exposure and effectiveness of engineering control strategies. Building and Environment, 39, 599–610.CrossRefGoogle Scholar
  16. Li, W., & Hopke, P. K. (1993). Initial size distributions and hygroscopicity of indoor combustion aerosol particles. Aerosological Science and Technology, 19, 305–316.CrossRefGoogle Scholar
  17. Li, C. S., Lin, W. H., & Jenq, F. T. (1993). Size distributions of submicrometer aerosols from cooking. Environment International, 19, 147–154.CrossRefGoogle Scholar
  18. Lioy, P. J., Wainman, T., & Zhang, J. J. (1999). Typical household vacuum cleaners, the collection efficiency and emissions characteristics for fine particles. Journal of the Air and Waste Management Association, 49, 200–206.Google Scholar
  19. Luoma, M., & Batterman, S. A. (2001). Characterization of particulate emissions from occupant activities in offices. Indoor Air, 11, 35–48.CrossRefGoogle Scholar
  20. Morawska, L., He, C., Hitchins, J., Mengersen, K., & Gilbert, D. (2003). Characteristics of particle number and mass concentrations in residential houses in Brisbane, Australia. Atmospheric Environment, 37, 4195–4203.CrossRefGoogle Scholar
  21. Schauer, J. J., Kleeman, M. J., Cass, G. R., & Simoneit, B. R. T. (1999). Measurement of emissions from air pollution sources. 1. C1 through C29 organic compounds from meat charbroiling. Environmental Science and Technology, 33, 1566–1577.CrossRefGoogle Scholar
  22. Siegmann, K., & Sattler, K. (1996). Aerosol from hot cooking oil, a possible health hazard. Journal of Aerosol Science, 27, 493–494.CrossRefGoogle Scholar
  23. Sohn, M. D., Lai, A., Smith, B. V., Sextro, R. G., Feustel, H. E., & Nazaroff, W. W. (1999). Modeling aerosol behavior in multizone indoor environments. Proceedings of Indoor Air’99 Edinburgh, 4, 785–790.Google Scholar
  24. Schneider, T., Jensen, K. A., Clausen, P. A., Afshari, A., Gunnarsen, L., Wåhlin, P., et al. (2004). Prediction of indoor concentration of 0.5-4 mm particles of outdoor origin in an uninhabited apartment. Atmospheric Environment, 38, 6349–6359.CrossRefGoogle Scholar
  25. Wallace, L. (2000). Real-time monitoring of particles, PAH, and CO in an occupied townhouse. Applied Occupational and Environmental Hygiene, 15, 39–47.CrossRefGoogle Scholar
  26. Wallace, L., & Howard-Reed, C. (2002). Continuous monitoring of ultrafine, fine and coarse particles in a residence for 18 months in 1999-2000. Journal of the Air and Waste Management Association, 52, 828–844.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of HelsinkiHelsinkiFinland

Personalised recommendations