Skip to main content

Dynamical Role of the Fictitious Orbital Mass in Car-Parrinello Molecular Dynamics

  • Chapter
  • First Online:
Chemistry for Sustainable Development

Abstract

We investigate ion-orbital interaction in Car-Parinnello molecular dynamics (CPMD) analytically and numerically in order to probe the role of the fictitious orbital mass. We show analytically that this interaction can be described by linearly coupled oscillators when the system is sufficiently close to the ground state. This leads to ionic vibrational modes with frequency ωM that depends upon the ionic mass M and the orbital mass μ as \( {{{\omega }}_{\text{M}}}{ = }{{{\omega }}_{\text{0M}}}{{[1 - {\text C}(\mu /M)]}} \) in the limit of zero μ/M; ω0M is the Born-Oppenheimer ionic frequency and C depends upon the ion-orbital coupling force constants. This analysis provides new insight on the orbital mass dependence of the dynamics, and suggests a rigorous method of obtaining accurate ionic vibrational frequency using CPMD. We verify our analytical results with numerical simulations for N2, and discuss in detail the dynamical interaction between the ionic and the fictitious orbital modes in CPMD. Our results demonstrate that displacement from the ground state significantly affects ionic frequencies. In the linear regime this results in the linear dependence of ionic vibrational frequency upon μ/M. In the non-linear regime, even the ionic geometry deviates from the correct ground-state structure, highlighting the importance of staying close to the ground state in CPMD calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Car R, Parrinello M (1985) Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett 55:2471–2474

    Article  CAS  Google Scholar 

  2. Field MJ (1990) Simulated annealing, classical molecule dynamics and the Hartree-Fock method: the NDDO approximation. Chem Phys Lett 172:83–88

    Article  CAS  Google Scholar 

  3. Hartke B, Carter EA (1992) Spin eigenstate-dependent Hartree-Fock molecular dynamics. Chem Phys Lett 189:358–362; Gibson DA, Carter EA (1997) Ab initio molecular dynamics of pseudorotating Li5. Chem Phys Lett 271:266–272; Liu ZH, Carter LE, Carter EA (1995) Full configuration interaction molecular dynamics of Na2 and Na3. J Phys Chem 99: 4355–4359

    Google Scholar 

  4. Sprik M, Klein M L (1988) J Chem Phys 89:7556–7560; Sprik M (1991) Computer simulation of the dynamics of induced polarization fluctuations in water. J Phys Chem 95:2283–2291

    Google Scholar 

  5. Rick SW, Stuart SJ, Berne BJ (1994) Dynamical fluctuating charge force fields: application to liquid water. J Chem Phys 101:6141–6156

    Article  CAS  Google Scholar 

  6. Pastore G, Smargiassi E, Buda F (1991) Theory of ab initio molecular-dynamics calculations. Phys Revi A 44:6334–6347

    Article  CAS  Google Scholar 

  7. Marx D, Hütter J (2000) Modern methods and algorithms of computational chemistry. In: Grotendo J (ed) Forschungszentrum Julich. Proceedings, vol 1

    Google Scholar 

  8. Car R, Angelis F, Giannozzi P, Marzari N (2005) First principles molecular dynamics. In: Yip S, Kaxiras E, Marzari N, Trout B (eds) Handbook of materials modeling: methods and models, vol 1. Springer, New York

    Google Scholar 

  9. Tangney P (2006) On the theory underlying the Car-Parrinello method and the role of the fictitious mass parameter. J Chem Phys 124:044111

    Article  Google Scholar 

  10. Tangney P, Scandolo S (2002) How well do Car-Parrinello simulations reproduce the Born-Oppenheimer surface? Theory and example. J Chem Phys 116:14–24

    Article  CAS  Google Scholar 

  11. Kuo IFW, Mundy CJ, McGrath MJ, Siepmann JI, VandeVondele J, Sprik M, Hutter J, Chen B, Klein ML, Mohamed F, Krack M, Parrinello M (2004) Liquid water from first principles: investigation of different sampling approaches. J Phys Chem B 108:12990–12998

    Article  CAS  Google Scholar 

  12. Kuo IFW, Mundy CJ, McGrath MJ, Siepmann JI (2006) Time-dependent properties of liquid water: a comparison of Car-Parrinello and Born-Oppenheimer molecular dynamics simulations. J Chem Theory Comput 2:1274–1281

    Article  CAS  Google Scholar 

  13. Ong SW, Tok ES, Kang HC (2010) Vibrational frequencies in Car-Parrinello molecular dynamics. Phys Chem Chem Phys 12:14960–14966

    Article  CAS  Google Scholar 

  14. Tassone F, Mauri F, Car R (1994) Acceleration schemes for ab initio molecular-dynamics simulations and electronic-structure calculations. Phys Rev B 50:10561–10573

    Article  CAS  Google Scholar 

  15. Giannozzi P et al (2009) Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502

    Article  Google Scholar 

  16. Wathelet V, Champagne B, Mosley DH, Andre J, Massida S (1997) Vibrational frequencies of diatomic molecules from Car and Parrinello molecular dynamics. Chem Phys Lett 275:506–512

    Article  CAS  Google Scholar 

  17. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100; Lee C, Yang W, Parr RC (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Google Scholar 

  18. Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:1993–2006

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Chuan Kang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ong, SW., Tok, ES., Kang, H.C. (2012). Dynamical Role of the Fictitious Orbital Mass in Car-Parrinello Molecular Dynamics. In: Gupta Bhowon, M., Jhaumeer-Laulloo, S., Li Kam Wah, H., Ramasami, P. (eds) Chemistry for Sustainable Development. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8650-1_11

Download citation

Publish with us

Policies and ethics