Advertisement

Taphonomy pp 457-486 | Cite as

Three-Dimensional Morphological (CLSM) and Chemical (Raman) Imagery of Cellularly Mineralized Fossils

  • J. William Schopf
  • Anatoliy B. Kudryavtsev
  • Abhishek B. Tripathi
  • Andrew D. Czaja
Chapter
Part of the Aims & Scope Topics in Geobiology Book Series book series (TGBI, volume 32)

Abstract

Of all modes of fossilization, cellular mineralization, whether by the ­non-biologic process of permineralization (“petrifaction”) or by microbially ­mediated mineral precipitation (“authigenic mineralization”), is the most faithful to the preservation of life-like cells and tissues that is known, yielding fossils that are among the biologically and taphonomically most informative available from the geological record. Such preservation spans all forms of life, ranging from vascular plants, such as those permineralized in calcitic coal balls; to organic-walled algae, fungi and ­bacterial prokaryotes, permineralized most commonly in fine-grained quartz; to metazoans that exhibit preserved soft tissues, such as those mineralized in apatite. Though such fossils can be preserved in exquisite cellular detail, two deficiencies have long hampered their study: (1) an inability to document fully their three-dimensional ­morphology at micron-scale spatial resolution; and (2) the lack of a means to analyze in situ and at such resolution the chemistry of the carbonaceous matter (kerogen) that comprises their structurally preserved anatomy. These needs have now been met by two techniques newly introduced to paleobiology, three-dimensional confocal laser scanning microscopy (CLSM) and two- and three-dimensional Raman imagery.

We here document the use of these techniques to elucidate the fine-scale structure and kerogenous composition of representative fossils of each of the major biologic groups (animals, plants, fungi, algal protists, and microbes) preserved in phosphorites, cherts, and carbonates, the three principal rock types in which cellular mineralization occurs. The examples presented include an apatite-mineralized ctenophore embryo preserved in a Cambrian phosphorite; quartz-permineralized Eocene fern rhizomes and a fungal-infested Devonian plant axis preserved in carbonaceous cherts; a calcite-permineralized plant stem preserved in a calcareous Carboniferous coal ball; and quartz-permineralized acritarchs (phytoplanktonic algae), cyanobacteria, and especially ancient fossil microbes permineralized in Precambrian cherts.

Use of CLSM and Raman imagery can provide new information about the morphology, cellular anatomy, taphonomy, carbonaceous composition and geochemical maturity of organic-walled mineralized fossils, whereas Raman imagery used alone can document the mineralogy of the enclosing matrix and the spatial relations between such fossils and their embedding minerals. Not only can the use of these techniques elucidate the sequence of events and taphonomic processes involved in the cellular mineralization of organic-walled fossils, but the use of Raman to document the geochemical maturity of their kerogenous constituents can provide new evidence of the biases of such preservation over time. Because both techniques are non-intrusive and non-destructive, both can be applied to specimens archived in museum collections. Taken together, the two techniques represent a major advance in the study of ancient fossils.

Keywords

Confocal Laser Scan Microscopy Carbonaceous Matter Confocal Laser Scan Microscopy Image Authigenic Mineralization Raman Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank D.E.G. Briggs, J. Shen-Miller, and the editors of this volume for helpful comments on the manuscript. The participation of A.B.K. in this work was supported by CSEOL, the IGPP Center for Study of the Origin and Evolution of Life at UCLA, and by the UCLA administration in support of UCLA’s membership in the NASA Astrobiology Institute. Both A.D.C. (supported in part during these studies by a pre-doctoral NSF Fellowship) and A.B.T. are recent recipients of Ph.D. degrees from UCLA, supported during their graduate studies by CSEOL Fellowships and by the principal source of funding for this work, CSEOL and NASA Exobiology Grant NAG5-12357 (to J.W.S).

References

  1. Altermann, W. (2005). The 3.5 Ga apex fossil assemblage? Consequences of an enduring discussion­. ISSOL’05, International Society of Study Origin Life Triennial Mtg., Beijing, Program Abstracts, pp. 136–137 [abstract].Google Scholar
  2. Altermann, W., Kazmierczak, J., Oren, A., & Wright, D. T. (2006). Cyanobacterial calcification and its rock-building potential during 3.5 billion years of Earth history. Geobiology, 4, 147–166.CrossRefGoogle Scholar
  3. Amos, W. B., & White, J. G. (2003). How the confocal laser scanning microscope entered biological research. Biology of the Cell, 95, 335–342.CrossRefGoogle Scholar
  4. Arnold, C. A., & Daugherty, L. H. (1964). A fossil dennstaedtioid fern from the Eocene Clarno Formation of Oregon. Contributions from the Museum of Paleontology, University of Michigan, 19, 65–88.Google Scholar
  5. Arouri, K. R., Greenwood, P. F., & Walter, M. R. (2000). Biological affinities of Neoproterozoic acritarchs from Australia: Microscopic and chemical characterization. Organic Geochemistry, 31, 75–89.CrossRefGoogle Scholar
  6. Bengtson, S., & Zhao, Y. (1997). Fossilized metazoan embryos from the earliest Cambrian. Science, 277, 1645–1648.CrossRefGoogle Scholar
  7. Bloeser, B., Schopf, J. W., Horodyski, H. J., & Breed, W. J. (1977). Chitinozoans from the Late Precambrian Chuar Group, Arizona. Science, 195, 676–679.CrossRefGoogle Scholar
  8. Brasier, M. D., Green, O. R., Jephcoat, A. P., Kleppe, A. K., Van Kranendonk, M. J., Lindsay, J. F., et al. (2002). Questioning the evidence of Earth’s oldest fossils. Nature, 416, 76–81.CrossRefGoogle Scholar
  9. Brasier, M. D., Green, O. R., Lindsay, J. F., McLoughlin, N., Steele, A., & Stoakes, C. (2005). Critical testing of Earth’s putative fossil assemblage from the 3.5 Ga Apex chert, Chinaman Creek, Western Australia. Precam Res, 140, 55–102.CrossRefGoogle Scholar
  10. Briggs, D. E. G. (2003). The role of decay and mineralization in the preservation of soft-bodied fossils. Annual Review of Earth and Planetary Sciences, 31, 275–301.CrossRefGoogle Scholar
  11. Briggs, D. E. G., Raiswell, R., Bottrell, S. H., Hatfield, D., & Bartels, C. (1996). Controls on the pyritization of exceptionally preserved fossils: An analysis of the Lower Devonian Hunsrück Slate of Germany. American Journal of Science, 296, 633–663.CrossRefGoogle Scholar
  12. Briggs, D. E. G., Moore, R. A., Shultz, J. W., & Schweigert, G. (2005). Mineralization of soft-part anatomy and invading microbes in the horseshoe crab Mesolimulus from the Upper Jurassic Lagerstätte of Nusplingen, Germany. Proceedings of Royal Society of London, B272, 727–632.Google Scholar
  13. Chen, J.-Y. (2004). The dawn of animal world. Nanjing, China: Jiangsu Science and Technology.Google Scholar
  14. Chen, J.-Y., Oliveri, P., Li, C.-W., Zhou, G.-Q., Gao, F., Hagadorn, J. W., et al. (2000). Precambrian animal diversity: Putative phosphatized embryos from the Doushantuo Formation of China. Proceedings of the National Academy of Sciences of the United States of America, 97, 4457–4462.CrossRefGoogle Scholar
  15. Chen, J.-Y., Braun, A. Waloszek, D., Peng, Q.-Q., & Maas, A. (2004). Lower yolk-pyramid embryos from Southern Shaanxi, China. In J. Zhu & M. Steiner (Eds.), Biological and geological processes of the Cambrian explosion, progress in natural science, Special Issue, 2004.Google Scholar
  16. Chen, J.-Y., Bottjer, D. J., Davidson, E. H., Dornbos, S. Q., Gao, X., Yang, J.-H., et al. (2006). Phosphatized polar lobe-forming embryos from the Precambrian of southwest China. Science, 312, 1644–1646.CrossRefGoogle Scholar
  17. Chen, J.-Y., Schopf, J. W., Bottjer, D. J., Zhang, C.-Y., Kudryavtsev, A. B., Tripathi, A. B., et al. (2007). Raman spectra of a Lower Cambrian ctenophore embryo from southwestern Shaanxi, China. Proceedings of the National Academy of Sciences of the United States of America, 104, 6289–6292.CrossRefGoogle Scholar
  18. Chi, H. M., Xiao, Z. D., Fuk, D. G., & Lu, Z. H. (2006). Analysis of fluorescence from algae fossils of the Neoproteozoic Doushantuo Formation of China by confocal laser scanning microscopy. Microscopic Research Technique, 69, 253–259.CrossRefGoogle Scholar
  19. Cisne, J. L. (1974). Trilobites and the origin of arthropods. Science, 186, 13–18.CrossRefGoogle Scholar
  20. De Gregorio, B. T., & Sharp T. G. (2003). Determining the biogenicity of microfossils in the Apex chert, Western Australia, using transmission electron microscopy. Lunar and Planetary Science, XXXIV, 1267 [abstract].Google Scholar
  21. De Gregorio, B. T., & Sharp, T. G. (2006). The structure and distribution of carbon in 3.5 Ga Apex chert: Implications for the biogenicity of Earth’s oldest putative microfossils. American Mineralogist, 91, 784–789.CrossRefGoogle Scholar
  22. De Gregorio, B. T., Sharp, T. G., & Flynn, G. F. (2005). A comparison of the structure and bonding of carbon in Apex chert kerogenous material and Fischer-Tropsch-Type carbons. Lunar and Planetary Science, XXXVI, 1866.Google Scholar
  23. Dean, B. (1902). The preservation of muscle fibers in sharks of the Cleveland shale. The American Geologist, 30, 273–278.Google Scholar
  24. Dietrich, D., Witke, K., Röbler, R., & Marx, G. (2001). Raman spectroscopy of Psaronius sp.: A contribution to the understanding of the permineralization process. Applied Surface Science, 179, 230–233.CrossRefGoogle Scholar
  25. Drews, G. (1973). Fine structure and chemical composition of the cell envelopes. In N. G. Carr & B. A. Whitton (Eds.), The biology of blue-green algae, Botanical Monographs (Vol. 9). CA, Berkeley: University of California Press.Google Scholar
  26. Feist-Burkhardt, S., & Monteil, E. (2001). Gonyaulacacean dinoflagellate cysts with multi-plate precingular archaeopyle. Neues Jahrbuch für Geologie und Paläontologie, 219, 33–81.Google Scholar
  27. Feist-Burkhardt, S., & Pröss, J. (1999). Morphological analysis and description of middle Jurassic dinoflagellate cyst marker species using confocal laser scanning microscopy, digital optical microscopy and conventional light microscopy. Bull du Centre de Recherche Elf Exploring, 22, 103–145.Google Scholar
  28. Foster, B., Williams, V. E., Witmer, R. J., & Piel, K. M. (1990). Confocal microscopy: A new technique for imaging micro-organisms and morphology in three-dimensions. Palynology, 14, 212 [abstract].Google Scholar
  29. Frank, H., Lefort, M., & Martin, H. H. (1962). Elektronenoptische und chemische Untersuchungen an Zellwäden der Blaualgen, Phormidium unicinatum. Zeitschrift fűr Naturforschung B, 17, 262–268.Google Scholar
  30. Grimes, S. T., Davies, K. L., Butler, I. B., Brock, F., Edwards, D., Rickard, D., et al. (2002). Fossil plants from the Eocene London Clay: The use of pyrite textures to determine the mechanism of pyritisation. Journal of Geological Society, 159, 493–501.CrossRefGoogle Scholar
  31. Halfen, L. N., & Castenholz, R. W. (1971). Gliding motility in the blue-green alga Oscillatoria princeps. J Phycol, 7, 133–145.Google Scholar
  32. Hochuli, P., & Feist-Burkhardt, S. (2004). An early boreal cradle of Angiosperms? Angiosperm-like pollen from the Middle Triassic of the Barents Sea (Norway). Journal of Micropalaeontology, 23, 97–104.CrossRefGoogle Scholar
  33. Jehlička, J., & Beny, C. (1992). Application of Raman microspectrometry in the study of structural changes in Precambrian kerogens during regional metamorphism. Organic Geochemistry, 18, 211–213.CrossRefGoogle Scholar
  34. Jehlička, J., Urban, A., & Pokorny, J. (2003). Raman spectroscopy of carbon and solid bitumens in sedimentary and metamorphic rocks. Spectrochimica Acta, A59, 2341–2352.Google Scholar
  35. Kaufman, A. J., & Xiao, S. (2003). High CO2 levels in the Proterozoic atmosphere estimated from analyses of individual microfossils. Nature, 425, 279–282.CrossRefGoogle Scholar
  36. Kelemen, S. R., & Fung, H. L. (2001). Maturity trends in Raman spectra from kerogen and coal. Energy and Fuels, 15, 653–658.CrossRefGoogle Scholar
  37. Kidston, R., & Lang, W. H. (1917). On Old Red Sandstone plants showing structure from the Rhynie Chert Bed, Aberdeenshire, part 1: Rhynie Gwynne-vaughani, K. and L. Transactions on Royal Society of Edinburgh, 52, 761–784.Google Scholar
  38. Kudryavtsev, A. B., Schopf, J. W., Agresti, D. G., & Wdowiak, T. J. (2001). In situ laser-Raman imagery of Precambrian microscopic fossils. Proceedings of the National Academy of Sciences of the United States of America, 98, 823–826.CrossRefGoogle Scholar
  39. Lamont, H. C. (1969). Sacrificial cell death and trichome breakage in an oscillatoriacean blue-green alga – the role of murein. Archiv für Mikrobiologie, 69, 237–259.CrossRefGoogle Scholar
  40. Marshall, C. P., Javaux, E. J., Knoll, A. H., & Walter, M. R. (2005). Combined micro-Fourier transform infrared (FTIR) spectroscopy and micro-Raman spectroscopy of Proterozoic acritarchs: A new approach to paleobiology. Precambrian Research, 138, 208–224.CrossRefGoogle Scholar
  41. McKeegan, K. D., Kudryavtsev, A. B., & Schopf, J. W. (2007). Raman and ion microscopic imagery of graphitic inclusions in apatite from >3830 Ma Akilia supracrustals, West Greenland. Geology, 35, 591–594.CrossRefGoogle Scholar
  42. McMillan, P. F., & Hofmeister, A. M. (1988). Infrared and Raman spectroscopy. Reviews in Mineralogy, 18, 99–159.Google Scholar
  43. Moorbath, S. (2005). Dating earliest life. Nature, 434, 155.CrossRefGoogle Scholar
  44. Mus, M. M., & Moczydlodłowska, M. (2000). Internal morphology and taphonomic history of the Neoproterozoic vase-shaped microfossils from Visingsö Group, Sweden. Norsk Geologisk Tidsskrift, 80, 213–228.CrossRefGoogle Scholar
  45. Nestler, K., Dietrich, D., Witke, K., Röβler, R., & Marx, G. (2003). Thermogravimetric and Raman spectroscopic investigations on different coals in comparison to dispersed anthracite found in permineralized tree fern Psaronius sp. Journal of Molecular Structure, 661–662, 357–362.CrossRefGoogle Scholar
  46. Nix, T., & Feist-Burkhardt, S. (2003). New methods applied to the microstructure analysis of Messel shale: Confocal laser scanning microscopy (CLSM) and environmental scanning electron microscopy (ESEM). Geological Magazine, 140, 469–478.CrossRefGoogle Scholar
  47. Pankratz, H. S., & Bowen, C. C. (1963). Cytology of blue-green algae I. The cells of Symploca muscorum. American Journal of Botany, 50, 387–399.CrossRefGoogle Scholar
  48. Pasteris, J. D., & Wopenka, B. (1991). Raman spectra of graphite as indicators of degree of metamorphism. The Canadian Mineralogist, 29, 1–9.Google Scholar
  49. Roberts, S., Tricker, P. M., & Marshall, J. E. A. (1995). Raman spectrometry of chitinozoans as a maturation indicator. Organic Geochemistry, 23, 223–238.CrossRefGoogle Scholar
  50. Scheckler, S. E. (1986). Geology, floristics and paleoecology of Late Devonian coal swamps from Appalachian Laurentia. Annales Société Géologique de Belgique, 109, 209–222.Google Scholar
  51. Scheckler, S. E., & Banks, H. P. (1971). Anatomy and relations of some Devonian progymnosperms from New York. American Journal of Botany, 58, 737–751.CrossRefGoogle Scholar
  52. Schopf, J. M. (1941). Contributions to Pennsylvanian paleobotany. Mazocarpon oedipternum sp. nov. and sigillarian relationships. Illinois State Geological Survey Report of Investigations, 75, 1–53.Google Scholar
  53. Schopf, J. W. (1968). Microflora of the Bitter Springs Formation, Late Precambrian, central Australia. Journal of Paleontology, 42, 651–688.Google Scholar
  54. Schopf, J. M. (1975). Modes of fossil preservation. Review of Palaeobotany and Palynology, 20, 27–53.CrossRefGoogle Scholar
  55. Schopf, J. W. (1992). Evolution of the Proterozoic biosphere: Benchmarks, tempo, and mode. In J. W. Schopf & C. Klein (Eds.), The Proterozoic biosphere, a multidisciplinary study. New York: Cambridge University Press.Google Scholar
  56. Schopf, J. W. (1993). Microfossils of the Early Archean Apex chert: New evidence of the antiquity of life. Science, 260, 640–646.CrossRefGoogle Scholar
  57. Schopf, J. W. (1999). Cradle of life: The discovery of Earth’s earliest fossils. Princeton, NJ: Princeton University Press.Google Scholar
  58. Schopf, J. W. (2004a). Earth’s earliest biosphere: Status of the hunt. In P. G. Eriksson, W. Altermann, D. R. Nelson, W. U. Mueller, O. Cateneanu (Eds.), The Precambrian earth: Tempos and events, Developments in Precambrian Geology 12, Amsterdam: Elsevier.Google Scholar
  59. Schopf, J. W. (2004b). Geochemical and submicron-scale morphologic analyses of individual Precambrian microorganisms. In R. J. Hill, Z. Aizenshtat, M. J. Baedecker, G. Claypool, R. Eanhouse, R. Goldhaber, M. Goldhaber, J. Lenventhal, & K. Peters (Eds.), Geochemical investigation in earth and space science, Publication No. 6. St. Louis, MO: The Geochemical Society.Google Scholar
  60. Schopf, J. W. (2006a). Fossil evidence of Archaean life. Philosophical Transactions of Royal Society of London B, 361, 869–885.CrossRefGoogle Scholar
  61. Schopf, J. W. (2006b). The first billion years: When did life emerge? Elements, 2, 299–233.CrossRefGoogle Scholar
  62. Schopf, J. W., & Blacic, J. M. (1971). New microorganisms from the Bitter Springs Formation (late Precambrian) of the north-central Amadeus Basin, Australia. Journal of Paleontology, 45, 925–960.Google Scholar
  63. Schopf, J. W., & Kudryavtsev, A. B. (2005). Three-dimensional imagery of Precambrian microscopic organisms. Geobiology, 3, 1–12.CrossRefGoogle Scholar
  64. Schopf, J. W., & Sovietov, Y. K. (1976). Microfossils in Conophyton from the Soviet Union and their bearing on Precambrian biostratigraphy. Science, 193, 143–146.CrossRefGoogle Scholar
  65. Schopf, J. W., Kudryavtsev, A. B., Agresti, D. G., Wdowiak, T. J., & Czaja, A. D. (2002). Laser-Raman imagery of Earth’s earliest fossils. Nature, 416, 73–76.CrossRefGoogle Scholar
  66. Schopf, J. W., Kudryavtsev, A. B., Agresti, D. G., Czaja, A. D., & Wdowiak, T. J. (2005). Raman imagery: A new approach to assess the geochemical maturity and biogenicity of permineralized Precambrian fossils. Astrobiology, 5, 333–371.CrossRefGoogle Scholar
  67. Schopf, J. W., Tripathi, A. B., & Kudryavtsev, A. B. (2006). Three-dimensional confocal optical imagery of Precambrian microscopic organisms. Astrobiology, 6, 1–16.CrossRefGoogle Scholar
  68. Schopf, J. W., Kudryavtsev, A. B., Czaja, A. D., & Tripathi, A. B. (2006b). Three-dimensional morphological (CLSM) and chemical (Raman) imagery of permineralized plants and organic-walled microorganisms. Prog Ann Mtg Bot Soc Amer, Chico, California (p. 171) [abstract].Google Scholar
  69. Schopf, J. W., Kudryavtsev, A. B., Czaja, A. D., & Tripathi, A. B. (2007). Evidence of Archean life: Stromatolites and microfossils. Precambrian Research, 158, 141–155.CrossRefGoogle Scholar
  70. Scott, A. C., & Hemsley, A. R. (1990). A comparison of new microscopical techniques for the study of fossil spore wall ultrastructure. Review of Palaeobotany and Palynology, 67, 133–139.CrossRefGoogle Scholar
  71. Scott, A. C., Mattey, D. P., & Howard, R. (1996). New data on the formation of Carboniferous coal balls. Review of Palaeobotany and Palynology, 93, 317–31.CrossRefGoogle Scholar
  72. Spötl, C., Houseknecht, D. W., & Jaques, R. C. (1998). Kerogen maturation and incipient graphitization of hydrocarbon source rocks in the Arkoma Basin, Oklahoma and Arkansas: A combined petrographic and Raman study. Organic Geochemistry, 28, 535–542.CrossRefGoogle Scholar
  73. Steiner, M., Zhu, M., Li, G., Quian, Y., & Erdtmann, B.-D. (2004). New Early Cambrian bilaterian embryos and larvae from China. Geology, 32, 833–836.CrossRefGoogle Scholar
  74. Steiner, M., Li, G., Quian, Y., & Erdtmann, B.-D. (2004). Lower Cambrian small shelly faunas from Zhejiang (China), and their biostratigraphic importance. Geobios, 37, 59–275.CrossRefGoogle Scholar
  75. Strauss, H., & Moore, T. B. (1992). Abundances and isotopic compositions of carbon and sulfur species in whole rock and kerogen samples. In J. W. Schopf & C. Klein (Eds.), The Proterozoic biosphere, a multidisciplinary study. New York: Cambridge University Press.Google Scholar
  76. Stuermer, W. (1970). Soft parts of cephalopods and trilobites: Some surprising results of X-ray examination of Devonian slates. Science, 170, 1300–1302.CrossRefGoogle Scholar
  77. Stuermer, W., & Bergström, J. (1973). New discoveries on trilobites by X-rays. Paläontologishe Zeitscrift, 47, 104–141.Google Scholar
  78. Talyzina, N. M. (1997). Fluorescence intensity in early Cambrian acritarchs from Estonia. Review of Palaeobotany and Palynology, 100, 99–108.CrossRefGoogle Scholar
  79. Taylor, T. N., & Remy, W. H. H. (1992). Fungi from the Lower Devonian Rhynie Chert – Chytridiomycetes. American Journal of Botany, 79, 1233–1241.CrossRefGoogle Scholar
  80. Taylor, T. N., & Taylor, E. L. (1993). The biology and evolution of fossil plants. New York: Prentice Hall.Google Scholar
  81. Tripathi, A. B. (2007). Three-dimensional confocal imagery and spectral analysis of ancient cellularly preserved fossils. Ph.D. dissertation, Department of Earth and Space Sciences, University of California, Los Angeles.Google Scholar
  82. Van Baalen, C., & Brown, R. M., Jr. (1969). The ultrastructure of the marine blue-green alga Trichodesmium erythraeum, with special reference to the cell wall, gas vacuoles, and cylindrical bodies. Archiv fűr Mikrobiologie, 69, 79–91.CrossRefGoogle Scholar
  83. Vandenbroucke, M., & Largeau, C. (2007). Kerogen origin, evolution and structure. Organic Geochemistry, 38, 719–833.CrossRefGoogle Scholar
  84. White, C. A. (1893). The character and origin of fossil remains. Smithsonian Institution, Annual Report for the year ending June 3, 1982, Report of the US National Museum 245(368), 251–267.Google Scholar
  85. Williams, K. P. J., Nelson, J., & Dyer, S. (1997). The Renishaw Raman database of gemological and mineralogical materials. Gloucestershire, England: Renishaw Tranducers Systems Division.Google Scholar
  86. Wopenka, B., & Pasteris, J. D. (1993). Structural characterization of kerogens to granulite-facies graphite: Applicability of Raman microprobe spectroscopy. The American Mineralogist, 78, 533–557.Google Scholar
  87. Xiao, S.-H., & Knoll, A. H. (2000). Phosphatized animal embryos from the Neoproterozoic Doushantuo Formation at Weng’an, Guizhou, South China. Journal of Paleontology, 74, 767–788.CrossRefGoogle Scholar
  88. Xiao, S.-H., Zhang, Y., & Knoll, A. H. (1998). Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature, 391, 553–558.CrossRefGoogle Scholar
  89. Yui, T.-F., Huang, E., & Xu, J. (1996). Raman spectrum of carbonaceous material: A possible metamorphic grade indicator for low-grade metamorphic rocks. Journal of Metamorphic Geology, 14, 115–124.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • J. William Schopf
    • 1
  • Anatoliy B. Kudryavtsev
    • 2
  • Abhishek B. Tripathi
    • 3
  • Andrew D. Czaja
    • 4
  1. 1.Department of Earth and Space Sciences, Institute of Geophysics and Planetary Physics (Center for the Study of Evolution and the Origin of Life), Molecular Biology Institute, and NASA Astrobiology InstituteUniversity of CaliforniaLos AngelesUSA
  2. 2.Institute of Geophysics and Planetary Physics (Center for the Study of Evolution and the Origin of Life) and NASA Astrobiology InstituteUniversity of CaliforniaLos AngelesUSA
  3. 3.Advanced Projects Office, Constellation ProgramNASA Johnson Spacecraft CenterHoustonUSA
  4. 4.Department of Earth and Space Sciences and Institute of Geophysics and Planetary Physics (Center for the Study of Evolution and the Origin of Life)University of CaliforniaLos AngelesUSA

Personalised recommendations