Advertisement

Taphonomy pp 411-434 | Cite as

Silicification Through Time

  • Susan H. Butts
  • Derek E. G. Briggs
Chapter
Part of the Aims & Scope Topics in Geobiology Book Series book series (TGBI, volume 32)

Abstract

Silicification, which requires dissolution of original shell material and precipitation of silica, is mediated by numerous biological and environmental factors. The processes and controls on silicification, the environments and conditions under which it occurs, and the temporal and spatial distribution of silicified deposits through the Phanerozoic are reviewed. Selective dissolution of original shell material in certain taxa or lithological settings results in a taphonomic bias which impacts our understanding of paleoecology and patterns of diversity over time. The temporal pattern of silicification is mediated mainly by global ocean chemistry and climate, particularly changes in carbonate solubility (the contrast in calcite and aragonite seas). On a finer scale, silicification of shelly fossils is influenced by taxonomic factors (shell mineralogy, organic material in the soft tissues and within the shell, shell ultrastructure) and by depositional factors (from porewater geochemistry, lithology, porosity, permeability, position within a stratigraphic sequence and basin characteristics, to global ocean chemistry). Silicification is more prevalent in the Paleozoic than in younger strata. The relationship between the abundance of silicified faunas, the greenhouse/icehouse signal, and fluctuations in carbonate rock volume are complex; the observed pattern may reflect sampling of exceptionally preserved silicified faunas rather than a global signal in silicification. The influence of shifts in biodiversity, in carbonate skeletons susceptible to silicification, and siliceous skeletons that provide a source of silica, remains to be determined.

Keywords

Siliceous Sponge Skeletal Material Silica Precipitation Shelly Fossil Early Silicification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aller, R. C. (1982). Carbonate dissolution in nearshore terrigenous muds: The role of physical and biological reworking. Journal of Geology, 90, 79–95.CrossRefGoogle Scholar
  2. Bathurst, R. G. C. (1975). Carbonate sediments and their diagenesis (2nd ed., 620 p.). Developments in Sedimentology 12. Amsterdam: Elsevier.Google Scholar
  3. Behrensmeyer, A. K., & Kidwell, S. M. (1985). Taphonomy’s contributions to paleobiology. Paleobiology, 11, 105–119.Google Scholar
  4. Behrensmeyer, A. K., Kidwell, S. M., & Gastaldo, R. A. (2000). Taphonomy and paleobiology. Paleobiology, 26(Supplement to part 4), 103–147.CrossRefGoogle Scholar
  5. Berner, R. A. (1975). The role of magnesium in the crystal growth of calcite and aragonite from sea water. Geochimica et Cosmochimica Acta, 39, 489–504.CrossRefGoogle Scholar
  6. Berner, R. A., Berner, E. K., & Keir, R. S. (1976). Aragonite dissolution on the Bermuda Pedestal: Its depth and geochemical significance. Earth and Planetary Science Letters, 30, 169–178.CrossRefGoogle Scholar
  7. Boyd, D. W., & Newell, N. D. (1972). Taphonomy and diagenesis of a Permian fossil assemblage from Wyoming. Journal of Paleontology, 46, 1–14.Google Scholar
  8. Brand, U. (1983). Mineralogy and chemistry of the Lower Pennsylvanian Kenrick Fauna, eastern Kentucky, U.S.A., 3. Diagenetic and paleoenvironmental analysis. Chemical Geology, 40, 167–181.CrossRefGoogle Scholar
  9. Brennan, S. T., & Lowenstein, T. K. (2002). The major-ion composition of Silurian seawater. Geochimica et Cosmochimica Acta, 66, 2683–2700.CrossRefGoogle Scholar
  10. Briggs, D. E. G. (2003). The role of decay and mineralization in the preservation of soft-bodied fossils. Annual Review of Earth and Planetary Sciences, 31, 275–301.CrossRefGoogle Scholar
  11. Buening, N. (2001). Brachiopod shells: Recorders of the present and keys to the past. In S. J. Carlson & M. R. Sandy (Eds.), Brachiopods ancient and modern, paleontological society special papers 7 (pp. 117–143). Paleontological Society.Google Scholar
  12. Butts, S. H. (2004). Silica diagenesis in the Lower Devonian Helderberg Group of New York. Geological Society of America, Abstracts with Programs, 36, 383–384.Google Scholar
  13. Butts, S. H. (2005). Latest Chesterian (Carboniferous) initiation of Gondwanan glaciation recorded in facies stacking patterns and brachiopod communities of the Antler foreland basin. Idaho, Palaeogeography, Palaeoclimatology, Palaeoecology, 223, 275–289.CrossRefGoogle Scholar
  14. Butts, S. H. (2007). Silicified carboniferous (Chesterian) brachiopoda of the Arco Hills Formation. Idaho, Journal of Paleontology, 81, 48–63.CrossRefGoogle Scholar
  15. Canfield, D. E., & Raiswell, R. (1991). Carbonate precipitation and dissolution: Its relevance to fossil preservation. In P. A. Allison & D. E. G. Briggs (Eds.), Taphonomy: Releasing the data locked in the fossil record (pp. 411–453). New York: Plenum.Google Scholar
  16. Chave, K. E. (1954). Aspects of the biogeochemistry of magnesium 1. Calcareous Marine Organisms, Journal of Geology, 62, 266–283.Google Scholar
  17. Cherns, L., & Wright, V. P. (2000). Missing molluscs and evidence of large-scale, early skeletal aragonite dissolution in a Silurian sea. Geology, 28, 791–794.CrossRefGoogle Scholar
  18. Cooper, G. A., & Grant, R. E. (1972). Permian Brachiopods of West Texas, I, Smithsonian Contributions to Paleobiology 14, 183 p.Google Scholar
  19. Correns, C. W. (1969). Introduction to mineralogy. New York: Springer. 484 p.Google Scholar
  20. Curry, G. B., & Ansell, A. D. (1986). Tissue mass in living brachiopods. Biostratigraphie du Paléozoique, 4, 231–241.Google Scholar
  21. Curry, G. B., Peck, L. S., Ansell, A. D., & James, M. (1989). Physiological constraints in fossil and recent brachiopods. Transactions of the Royal society of Edinburgh: Earth Sciences, 80, 255–262.Google Scholar
  22. Daley, R. L. (1987). Patterns and controls of skeletal silicification in a Mississippian fauna, northwestern Wyoming. Unpublished masters thesis, University of Wyoming, 140 p.Google Scholar
  23. Daley, R. L., & Boyd, D. W. (1996). The role of skeletal microstructure during selective silicification of brachiopods. Journal of Sedimentary Research, 66, 155–162.Google Scholar
  24. Davies, D. J., Powell, E. N., & Stanton, R. J., Jr. (1989). Relative rates of shell dissolution and net sediment accumulation; a commentary, can shell beds form by the gradual accumulation of biogenic debris on the sea floor? Lethaia, 22, 207–212.CrossRefGoogle Scholar
  25. Dott, D. H., Jr. (1958). Cyclical patterns in mechanically deposited Pennsylvanian limestones of northeastern Nevada. Journal of Sedimentary Petrology, 28, 3–15.Google Scholar
  26. Erwin, D. H., & Kidder, D. L. (2000). Depositional controls on selective silicification of Permian fossils, southwestern United States. In B. R. Wardlaw, R. E. Grant, & D. M. Rohr (Eds.), Guadalupian symposium, Smithsonian contributions to earth science 32 (pp. 407–415). Washington, DC: Smithsonian Institution Press.Google Scholar
  27. Fairbridge, R. W. (1983). Syndiagenesis-anadiagenesis-epidiagenesis; phases in lithogenesis. In G. Larsen & G. V. Chilingar (Eds.), Diagenesis in sediments and sedimentary rocks 2 (pp. 17–113). Amsterdam: Elsevier.Google Scholar
  28. Fischer, A. G. (1982). Long-term climatic oscillations recorded in stratigraphy. In W. Berger (Ed.), Climate in earth history, National Research Council, studies in geophysics (pp. 97–104). Washington, DC: National Academy Press.Google Scholar
  29. Fox, W. T. (1962). Stratigraphy and paleoecology of the Richmond Group in Southeastern Indiana. Geological Society of America Bulletin, 73, 621–642.CrossRefGoogle Scholar
  30. Francis, S., Barghoorn, E. S., & Margulis, L. (1978). On the experimental silicification of microorganisms; III. Implications of the preservation of the green prokaryotic alga Prochloron and other coccoids for interpretation of the microbial fossil record. Precambrian Research, 7, 377–383.CrossRefGoogle Scholar
  31. Froelich, P. N., Klinkhamemer, G. P., Bender, M. L., Luedtke, N. A., Heath, G. R., Cullen, D., et al. (1979). Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis. Geochimica et Cosmochimica Acta, 43, 1075–1090.CrossRefGoogle Scholar
  32. Gaspard, D., & Roux, M. (1974). Quelques aspects de la fossilisation des tests chez les Brachiopodes et les Crinoides; relation entre la presence de matiere organique et le developpement d’agregats ferrifères. Geobios, 7, 81–89.CrossRefGoogle Scholar
  33. Glover, C. P., & Kidwell, S. M. (1993). Influence of organic matrix on the postmortem destruction of molluscan shells. Journal of Geology, 101, 729–747.CrossRefGoogle Scholar
  34. Harper, E. M. (2000). Are calcitic layers an effective adaptation against shell dissolution in the Bivalvia? Journal of Zoology, 251, 179–186.CrossRefGoogle Scholar
  35. Henrich, R. (1985). A calcite dissolution pulse in the Norwegian-Greenland Sea during the last deglaciation. Geologische Rundschau, 75, 805–827.CrossRefGoogle Scholar
  36. Henrich, R., & Wefer, G. (1986). Dissolution of biogenic carbonates; effects of skeletal structure. Marine Geology, 71, 341–362.CrossRefGoogle Scholar
  37. Henry, T. W., & Gordon, M. Jr. (1992). Middle and Upper Chesterian brachiopod biostratigraphy, eastern Appalachians, Virginia and West Virginia. In P. K. Sutherland & W. L. Manger (Eds.), Recent advances in Middle Carboniferous biostratigraphy – A symposium, Oklahoma Geological Survey Circular 94 (pp. 1–21).Google Scholar
  38. Hesse, R. (1989). Silica diagenesis; origin of inorganic and replacement cherts. Earth Science Reviews, 26, 253–284.CrossRefGoogle Scholar
  39. Hesse, R. (1990). Origin of cherts: Diagenesis of biogenic siliceous sediments. In I. A. McIlreath & D. W. Morrow (Eds.), Diagenesis: Geological Association of Canada, Geoscience Canada Reprint series 4. (pp. 227–252).Google Scholar
  40. Hinman, N. W. (1987). Organic and inorganic chemical controls on the rates of silica diagenesis; a comparison of a natural system with experimental results. Unpublished Ph.D. dissertation. University of California, San Diego, 402 p.Google Scholar
  41. Hinman, N. W. (1990). Chemical factors influencing the rates and sequences of silica phase transitions: Effects of organic constituents. Geochimica et Cosmochimica Acta, 54, 1563–1574.CrossRefGoogle Scholar
  42. Hinman, N. W. (1998). Sequences of silica phase transitions: Effects of Na, Mg, K, Al, and Fe ions. Marine Geology, 147, 13–24.CrossRefGoogle Scholar
  43. Hodges, E. S. (1932). Liesegang rings and other periodic structures. London: Chapman & Hall. 122 p.Google Scholar
  44. Holdaway, H. K., & Clayton, C. J. (1982). Preservation of shell microstructure in silicified brachiopods from the Upper Cretaceous Wilmington Sands of Devon. Geological Magazine, 119, 371–382.CrossRefGoogle Scholar
  45. Holland, S. M., & Patzkowsky, M. E. (1997). Distal orogenic effects on peripheral bulge sedimentation: Middle and Upper Ordovician of the Nashville Dome. Journal of Sedimentary Research, 67, 250–263.Google Scholar
  46. Holland, S. M., & Patzkowsky, M. E. (1998). Sequence stratigraphy and relative sea-level history of the Middle and Upper Ordovician of the Nashville Dome, Tennessee. Journal of Sedimentary Research, 68, 684–699.Google Scholar
  47. Iler, R. K. (1979). The chemistry of silica: Solubility, polymerization, colloid and surface properties, and biochemistry. New York: Wiley. 866 p.Google Scholar
  48. Jacka, A. D. (1974). Replacement of fossils by length-slow chalcedony and associated dolomitization. Journal of Sedimentary Petrology, 44, 421–427.Google Scholar
  49. Kidder, D. L., & Erwin, D. H. (2001). Secular distribution of biogenic silica through the Phanerozoic: Comparison of silica-replaced fossils and bedded cherts at the series level. Journal of Geology, 109, 509–522.CrossRefGoogle Scholar
  50. Kidder, D. L., & Mumma, S. A. (2003). Silica-replaced oolites, bedded shelf cherts and Paleozoic changes in the silica cycle. Sedimentary Geology, 162, 159–166.CrossRefGoogle Scholar
  51. Klein, R. T., & Walter, L. M. (1995). Interactions between dissolved silica and carbonate minerals: An experimental study at 25–50°C. Chemical Geology, 125, 29–43.CrossRefGoogle Scholar
  52. Knauth, L. P. (1979). A model for the origin of chert in limestone. Geology, 7, 274–277.CrossRefGoogle Scholar
  53. Lancelot, Y. (1973). Chert and silica diagenesis in sediments from the central Pacific. Initial Reports of the Deep Sea Drilling Project, 17, 377–405.CrossRefGoogle Scholar
  54. Land, L. S. (1967). Diagenesis of skeletal carbonates. Journal of Sedimentary Petrology, 37, 914–920.Google Scholar
  55. Laufeld, S., & Jeppsson, L. (1976). Silicification and bentonites in the Silurian of Gotland. Geologiska Föreningens i Stockholm Föhandlingar, 98, 31–44.Google Scholar
  56. Leo, R. F., & Barghoorn, E. S. (1976). Silicification of wood. Botanical Museum Leaflets, Harvard University, 25, 1–47.Google Scholar
  57. Loope, D. B., & Watkins, D. K. (1989). Pennsylvanian fossils replaced by red chert: Early oxidation of pyritic precursors. Journal of Sedimentary Petrology, 59, 375–386.Google Scholar
  58. Maliva, R. G. (1992). Selective silicification of fossils by syntaxial overgrowths on quartz sand, Oriskany Sandstone (Lower Devonian), New York. Sedimentary Geology, 78, 165–170.CrossRefGoogle Scholar
  59. Maliva, R. G., & Siever, R. (1988). Mechanisms and controls of silicification of fossils in limestones. Journal of Geology, 96, 387–398.CrossRefGoogle Scholar
  60. Maliva, R. G., Knoll, A. H., & Siever, R. (1989). Secular change in chert distribution: A reflection of evolving biological participation in the silica cycle. Palaios, 4, 519–532.CrossRefGoogle Scholar
  61. Maliva, R. G., Knoll, A. H., & Simonson, B. M. (2005). Secular change in the Precambrian silica cycle; insights from chert petrology. Geological Society of America Bulletin, 117, 835–845.CrossRefGoogle Scholar
  62. Meyers, W. J. (1977). Chertification in the Mississippian lake valley formation, Sacramento Mountains, New Mexico. Sedimentology, 24, 75–105.CrossRefGoogle Scholar
  63. Misík, M. (1995). Selective silicification of calcitic fossils and bioclasts in the West-Carpathian limestones. Geologica Carpathica, 46, 151–159.Google Scholar
  64. Newell, N. D., & Boyd, D. W. (1970). Oyster-like Permian bivalvia. Bulletin of the American Museum of Natural History, 143, 217–282.Google Scholar
  65. Newell, N. D., Rigby, J. K., Fischer, A. G., Whiteman, A. J., Hickox, J. E., & Bradley, J. S. (1953). The Permian reef complex of the Guadalupe mountains region, Texas and New Mexico; A study in paleoecology. San Francisco: W.H. Freeman. 236 p.Google Scholar
  66. Palmer, T. J., Hudson, J. D., & Wilson, M. A. (1988). Palaecological evidence for early aragonite dissolution in ancient calcites seas. Nature, 335, 809–810.CrossRefGoogle Scholar
  67. Paraguasso, A. B. (1976). Experimental replacement of silica. Revista Brasiliera de Geociências, 6, 89–94.Google Scholar
  68. Peck, L. S. (1993). The tissues of articulate brachiopods and their value to predators. Philosophical Transactions of the Royal Society of London, 339, 17–32.CrossRefGoogle Scholar
  69. Peck, L. S., Clarke, A., & Holmes, L. J. (1987). Size, shape, and the distribution of organic matter in the Recent Antarctic brachiopod Liothyrella uva. Lethaia, 20, 33–40.CrossRefGoogle Scholar
  70. Racki, G. (1999). Silica-secreting biota and mass extinctions: Survival patterns and processes. Palaeogeography, Palaeoclimatology, Palaeoecology, 154, 107–132.CrossRefGoogle Scholar
  71. Railsback, B. L., & Anderson, T. F. (1987). Control of Triassic seawater chemistry and temperature on the evolution of post-Paleozoic aragonite-secreting faunas. Geology, 15, 1002–1005.CrossRefGoogle Scholar
  72. Railsback, L. B., Holland, S. M., Hunter, D. M., Jordon, E. M., Díaz, J. R., & Crowe, D. E. (2003). Controls on geochemical expression of subaerial exposure in Ordovician limestones from the Nashville Dome, Tennesee, USA. Journal of Sedimentary Research, 73, 790–805.CrossRefGoogle Scholar
  73. Ries, J. B., & Blaustein, M. K. (2003). Modern high-magnesium calcite organisms produce low-magnesium calcite in experimental Mid-Cretaceous sea water. Geological Society of America, Abstracts with Programs, 35, 204–205.Google Scholar
  74. Sandberg, P. A. (1983). An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature, 305, 19–22.CrossRefGoogle Scholar
  75. Schieber, J. (1996). Early diagenetic silica deposition in algal cysts and spores; a source of sand in black shales? Journal of Sedimentary Research, 66, 175–183.Google Scholar
  76. Schmitt, J. G., & Boyd, D. W. (1981). Patterns of silicification in Permian pelecypods and brachiopods from Wyoming. Journal of Sedimentary Petrology, 51, 1297–1308.Google Scholar
  77. Scholle, P. A., & Ulmer-Scholle, D. S. (2003). A color guide to the petrography of carbonate rocks: grains, textures, porosity, diagenesis. American Association of Petroleum Geologists Memoir 77, Tulsa, OK, 474 p.Google Scholar
  78. Schubert, J. K., Kidder, D. L., & Erwin, D. H. (1997). Silica-replaced fossils through the Phanerozoic. Geology, 25, 1031–1034.CrossRefGoogle Scholar
  79. Smith, A. B. (2003). Getting the measure of diversity. Paleobiology, 29, 34–36.CrossRefGoogle Scholar
  80. Stanley, S. M., & Hardie, L. A. (1998). Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeography, Palaeoclimatology, Palaeoecology, 144, 3–19.CrossRefGoogle Scholar
  81. Tomasovych, A., & Rothfus, T. A. (2005). Differential taphonomy of modern brachiopods (San Juan Islands, Washington State): Effect of intrinsic factors on damage and community-level abundance. Lethaia, 38, 271–292.CrossRefGoogle Scholar
  82. Tréguer, P., Nelson, D. M., Van Bennkeom, A. J., DeMaster, D. J., Leynaert, A., & Quéguiner. (1995). The silica balance in the world’s ocean: A reestimate. Science, 268, 375–379.CrossRefGoogle Scholar
  83. Tucker, M. E. (1991). The diagenesis of fossils. In S. K. Donovan (Ed.), The processes of fossilization (pp. 84–104). New York: Columbia University Press.Google Scholar
  84. Tucker, M. E., & Wright, V. P. (1990). Carbonate sedimentology. Oxford/England: Blackwell. 482 p.CrossRefGoogle Scholar
  85. Walter, L. M. (1983). The dissolution kinetics of shallow water carbonate grain types; effects of mineralogy, microstructure, and solution chemistry (347 p). Unpublished Ph.D. dissertation, University of Miami.Google Scholar
  86. Walter, L. M. (1985). Relative reactivity of skeletal components during dissolution. In N. Schneidermann & P. M. Harris (Eds.), Carbonate cements, SEPM Special Publication 36 (pp. 3–16).Google Scholar
  87. Walter, L. M., & Morse, J. W. (1984). Reactive surface area of skeletal carbonates during dissolution; effect of grain size. Journal of Sedimentary Petrology, 54, 1081–1090.Google Scholar
  88. Walter, L. M., & Morse, J. W. (1985). The dissolution kinetics of shallow marine carbonates in seawater: A laboratory study. Geochimica et Cosmochimica Acta, 49, 1503–1513.CrossRefGoogle Scholar
  89. Wilkinson, B. H. (1979). Biomineralization, paleoceanography, and the evolution of calcareous marine organisms. Geology, 7, 524–527.CrossRefGoogle Scholar
  90. Williams, A. (1990). Biomineralization in the lophophorates. In J. G. Carter (Ed.), Skeletal biomineralization: patterns, trends, and evolutionary processes (Vol. 1, pp. 67–82). New York: Van Nostrand Reinhold.Google Scholar
  91. Williams, A. (1997). Shell Structure. In R. Kaesler (Ed.), Treatise on invertebrate paleontology, Part H, revised, Brachiopoda (Vol. 1, pp. 267–320). Lawrence: Geological Society of America and University of Kansas Press.Google Scholar
  92. Williams, L. A., & Crerar, D. A. (1985). Silica diagenesis, II. General Mechanisms. Journal of Sedimentary Petrology, 55, 312–321.Google Scholar
  93. Wright, V. P., Cherns, L., & Hodges, P. (2003). Missing molluscs: Field testing taphonomic loss in the Mesozoic through early large-scale aragonite dissolution. Geology, 31, 211–214.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Division of Invertebrate Paleontology, Peabody Museum of Natural HistoryYale UniversityNew HavenUSA
  2. 2.Department of Geology and GeophysicsYale UniversityNew HavenUSA
  3. 3.Peabody Museum of Natural HistoryYale UniversityNew HavenUSA

Personalised recommendations